# coding=utf-8 # Copyright 2024 Meta Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch Chameleon model.""" import math from functools import cached_property from typing import Optional, Tuple, Union import torch import torch.nn.functional as F import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...cache_utils import Cache, StaticCache from ...modeling_attn_mask_utils import AttentionMaskConverter from ...modeling_flash_attention_utils import _flash_attention_forward from ...modeling_outputs import ( BaseModelOutputWithPast, CausalLMOutputWithPast, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import ALL_LAYERNORM_LAYERS from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, is_flash_attn_2_available, is_flash_attn_greater_or_equal_2_10, logging, replace_return_docstrings, ) from .configuration_chameleon import ChameleonConfig, ChameleonVQVAEConfig if is_flash_attn_2_available(): from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa # Copied from transformers.models.llama.modeling_llama._prepare_4d_causal_attention_mask_with_cache_position def _prepare_4d_causal_attention_mask_with_cache_position( attention_mask: torch.Tensor, sequence_length: int, target_length: int, dtype: torch.dtype, device: torch.device, min_dtype: float, cache_position: torch.Tensor, batch_size: int, ): """ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. Args: attention_mask (`torch.Tensor`): A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. sequence_length (`int`): The sequence length being processed. target_length (`int`): The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. dtype (`torch.dtype`): The dtype to use for the 4D attention mask. device (`torch.device`): The device to plcae the 4D attention mask on. min_dtype (`float`): The minimum value representable with the dtype `dtype`. cache_position (`torch.Tensor`): Indices depicting the position of the input sequence tokens in the sequence. batch_size (`torch.Tensor`): Batch size. """ if attention_mask is not None and attention_mask.dim() == 4: # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. causal_mask = attention_mask else: causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device) if sequence_length != 1: causal_mask = torch.triu(causal_mask, diagonal=1) causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit mask_length = attention_mask.shape[-1] padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] padding_mask = padding_mask == 0 causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( padding_mask, min_dtype ) return causal_mask logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "ChameleonConfig" _CHECKPOINT_FOR_DOC = "meta/chameleon-7b" _EXPECTED_OUTPUT_SHAPE = [1, 7, 4096] _SEQ_CLASS_EXPECTED_LOSS = 1.03 _SEQ_CLASS_EXPECTED_OUTPUT = "'LABEL_0'" # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Chameleon class ChameleonRMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ ChameleonRMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) def extra_repr(self): return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" ALL_LAYERNORM_LAYERS.append(ChameleonRMSNorm) # copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Chameleon # TODO(joao): add me back asap :) class ChameleonRotaryEmbedding(nn.Module): def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): super().__init__() self.scaling_factor = scaling_factor self.dim = dim self.max_position_embeddings = max_position_embeddings self.base = base inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) self.register_buffer("inv_freq", inv_freq, persistent=False) # For BC we register cos and sin cached self.max_seq_len_cached = max_position_embeddings @torch.no_grad() def forward(self, x, position_ids): # x: [bs, num_attention_heads, seq_len, head_size] inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) position_ids_expanded = position_ids[:, None, :].float() # Force float32 since bfloat16 loses precision on long contexts # See https://github.com/huggingface/transformers/pull/29285 device_type = x.device.type device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.cat((freqs, freqs), dim=-1) cos = emb.cos() sin = emb.sin() return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) # copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->Chameleon # TODO(joao): add me back asap :) class ChameleonLinearScalingRotaryEmbedding(ChameleonRotaryEmbedding): """ChameleonRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" def forward(self, x, position_ids): # difference to the original RoPE: a scaling factor is aplied to the position ids position_ids = position_ids.float() / self.scaling_factor cos, sin = super().forward(x, position_ids) return cos, sin # copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->Chameleon # TODO(joao): add me back asap :) class ChameleonDynamicNTKScalingRotaryEmbedding(ChameleonRotaryEmbedding): """ChameleonRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla""" def forward(self, x, position_ids): # difference to the original RoPE: inv_freq is recomputed when the sequence length > original length seq_len = torch.max(position_ids) + 1 if seq_len > self.max_position_embeddings: base = self.base * ( (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1) ) ** (self.dim / (self.dim - 2)) inv_freq = 1.0 / ( base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(x.device) / self.dim) ) self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: this may break with compilation cos, sin = super().forward(x, position_ids) return cos, sin # Copied from transformers.models.llama.modeling_llama.rotate_half def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`, *optional*): Deprecated and unused. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos.unsqueeze(unsqueeze_dim) sin = sin.unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed # Copied from transformers.models.llama.modeling_llama.LlamaMLP with Llama->Chameleon class ChameleonMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias) self.act_fn = ACT2FN[config.hidden_act] # Ignore copy def forward(self, x): down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) return down_proj class ChameleonLayerNorm(nn.LayerNorm): """ LayerNorm but computes stats only over the last dim because Chameleon applies gamma and beta from each shard separately to each head, instead of reducing. We can apply each head's own gamma/beta by repeat-interleaving weights from each shard, but the stats have to be computed in the last dimension. This module applies gamma/beta manually to fulfill this requirement. """ def __init__(self, hidden_size, *args, **kwargs): super().__init__(hidden_size, *args, **kwargs) self.normalized_shape = (hidden_size[-1],) def forward(self, hidden_states): hidden_states = F.layer_norm(hidden_states, self.normalized_shape, None, None, eps=1e-5) hidden_states = hidden_states * self.weight + self.bias return hidden_states # Copied from transformers.models.llama.modeling_llama.repeat_kv def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) class ChameleonAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: ChameleonConfig, layer_idx: Optional[int] = None): super().__init__() self.config = config self.layer_idx = layer_idx if layer_idx is None: logger.warning_once( f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " "when creating this class." ) self.attention_dropout = config.attention_dropout self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.hidden_size // self.num_heads self.num_key_value_heads = config.num_key_value_heads self.num_key_value_groups = self.num_heads // self.num_key_value_heads self.max_position_embeddings = config.max_position_embeddings self.rope_theta = config.rope_theta self.is_causal = True self.model_parallel_size = config.model_parallel_size if (self.head_dim * self.num_heads) != self.hidden_size: raise ValueError( f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" f" and `num_heads`: {self.num_heads})." ) self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias) self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=config.attention_bias) self.q_norm = ChameleonLayerNorm((self.num_heads, self.head_dim)) self.k_norm = ChameleonLayerNorm((self.num_key_value_heads, self.head_dim)) self._init_rope() # copied from transformers.models.llama.modeling_llama.LlamaAttention._init_rope with Llama->Chameleon # TODO(joao): add me back asap :) def _init_rope(self): if self.config.rope_scaling is None: self.rotary_emb = ChameleonRotaryEmbedding( self.head_dim, max_position_embeddings=self.max_position_embeddings, base=self.rope_theta, ) else: scaling_type = self.config.rope_scaling["type"] scaling_factor = self.config.rope_scaling["factor"] if scaling_type == "linear": self.rotary_emb = ChameleonLinearScalingRotaryEmbedding( self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor, base=self.rope_theta, ) elif scaling_type == "dynamic": self.rotary_emb = ChameleonDynamicNTKScalingRotaryEmbedding( self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor, base=self.rope_theta, ) else: raise ValueError(f"Unknown RoPE scaling type {scaling_type}") def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.reshape(-1, self.num_heads, self.head_dim) query_states = self.q_norm(query_states) key_states = key_states.reshape(-1, self.num_key_value_heads, self.head_dim) key_states = self.k_norm(key_states) query_states = query_states.reshape(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.reshape(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) cos, sin = self.rotary_emb(value_states, position_ids) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: # sin and cos are specific to RoPE models; position_ids needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) if attention_mask is not None: # no matter the length, we just slice it causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1).to(query_states.dtype) attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) attn_output = torch.matmul(attn_weights, value_states) if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value # copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with Llama->Chameleon # TODO(joao): add me back asap :) class ChameleonFlashAttention2(ChameleonAttention): """ Chameleon flash attention module. This module inherits from `ChameleonAttention` as the weights of the module stays untouched. The only required change would be on the forward pass where it needs to correctly call the public API of flash attention and deal with padding tokens in case the input contains any of them. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() # Ignore copy def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: if isinstance(past_key_value, StaticCache): raise ValueError( "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` " "make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers" ) output_attentions = False bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.reshape(-1, self.num_heads, self.head_dim) query_states = self.q_norm(query_states) key_states = key_states.reshape(-1, self.num_key_value_heads, self.head_dim) key_states = self.k_norm(key_states) # Flash attention requires the input to have the shape # batch_size x seq_length x head_dim x hidden_dim # therefore we just need to keep the original shape query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) cos, sin = self.rotary_emb(value_states, position_ids) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: # sin and cos are specific to RoPE models; position_ids needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. # We would need to refactor the KV cache to be able to avoid many of these transpose/reshape/view. query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) dropout_rate = self.attention_dropout if self.training else 0.0 # In PEFT, usually we cast the layer norms in float32 for training stability reasons # therefore the input hidden states gets silently casted in float32. Hence, we need # cast them back in the correct dtype just to be sure everything works as expected. # This might slowdown training & inference so it is recommended to not cast the LayerNorms # in fp32. (ChameleonRMSNorm handles it correctly) input_dtype = query_states.dtype if input_dtype == torch.float32: if torch.is_autocast_enabled(): target_dtype = torch.get_autocast_gpu_dtype() # Handle the case where the model is quantized elif hasattr(self.config, "_pre_quantization_dtype"): target_dtype = self.config._pre_quantization_dtype else: target_dtype = self.q_proj.weight.dtype logger.warning_once( f"The input hidden states seems to be silently casted in float32, this might be related to" f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" f" {target_dtype}." ) query_states = query_states.to(target_dtype) key_states = key_states.to(target_dtype) value_states = value_states.to(target_dtype) attn_output = _flash_attention_forward( query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate, sliding_window=getattr(self, "sliding_window", None), use_top_left_mask=self._flash_attn_uses_top_left_mask, is_causal=self.is_causal, ) attn_output = attn_output.reshape(bsz, q_len, -1).contiguous() attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value class ChameleonSdpaAttention(ChameleonAttention): """ Chameleon attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from `ChameleonAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to SDPA API. """ # Adapted from ChameleonAttention.forward def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: if output_attentions: # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. logger.warning_once( "ChameleonModel is using ChameleonSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) return super().forward( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, ) bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.reshape(-1, self.num_heads, self.head_dim) query_states = self.q_norm(query_states) key_states = key_states.reshape(-1, self.num_key_value_heads, self.head_dim) key_states = self.k_norm(key_states) query_states = query_states.reshape(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.reshape(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) cos, sin = self.rotary_emb(value_states, position_ids) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, None) if past_key_value is not None: # sin and cos are specific to RoPE models; position_ids needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) causal_mask = attention_mask if attention_mask is not None and cache_position is not None: causal_mask = causal_mask[:, :, :, : key_states.shape[-2]] # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, # Reference: https://github.com/pytorch/pytorch/issues/112577. if query_states.device.type == "cuda" and causal_mask is not None: query_states = query_states.contiguous() key_states = key_states.contiguous() value_states = value_states.contiguous() # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. is_causal = True if causal_mask is None and q_len > 1 else False attn_output = torch.nn.functional.scaled_dot_product_attention( query_states, key_states, value_states, attn_mask=causal_mask, dropout_p=self.attention_dropout if self.training else 0.0, is_causal=is_causal, ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.view(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) return attn_output, None, past_key_value CHAMELEON_ATTENTION_CLASSES = { "eager": ChameleonAttention, "flash_attention_2": ChameleonFlashAttention2, "sdpa": ChameleonSdpaAttention, } # copied from transformers.models.llama.modeling_llama.LlamaDecoderLayer with Llama->Chameleon, LLAMA->CHAMELEON # TODO(joao): add me back asap :) class ChameleonDecoderLayer(nn.Module): def __init__(self, config: ChameleonConfig, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size self.self_attn = CHAMELEON_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) self.mlp = ChameleonMLP(config) self.input_layernorm = ChameleonRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = ChameleonRMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, query_sequence_length, key_sequence_length)` if default attention is used. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence kwargs (`dict`, *optional*): Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code into the model """ residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, **kwargs, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs class ChameleonSwinDecoderLayer(nn.Module): def __init__(self, config: ChameleonConfig, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size self.self_attn = CHAMELEON_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) self.mlp = ChameleonMLP(config) self.input_layernorm = ChameleonRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = ChameleonRMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, query_sequence_length, key_sequence_length)` if default attention is used. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. """ residual = hidden_states # Self Attention hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, **kwargs, ) hidden_states = self.input_layernorm(hidden_states) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.mlp(hidden_states) hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs class ChameleonVQVAEVectorQuantizer(nn.Module): """ A module for vector quantization using learned embedding vectors. This module implements the quantization process similar to te one described in the VQ-VAE (Vector Quantized Variational AutoEncoder) paper. It quantizes continuous input vectors into discrete codebook vectors, which are learned during training. Current implementation improves over previous ones by avoiding costly matrix multiplications and allowing for post-hoc remapping of indices. """ def __init__(self, config): super().__init__() self.num_embeddings = config.num_embeddings self.embedding_dim = config.embed_dim self.beta = getattr(config, "beta", 0.25) self.embedding = nn.Embedding(self.num_embeddings, self.embedding_dim) self.re_embed = self.num_embeddings def forward(self, hidden_state: torch.Tensor): hidden_state = hidden_state.permute(0, 2, 3, 1).contiguous() hidden_state_flattened = hidden_state.view(-1, self.embedding_dim) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z distances = ( torch.sum(hidden_state_flattened**2, dim=1, keepdim=True) + torch.sum(self.embedding.weight**2, dim=1) - 2 * torch.einsum("bd,dn->bn", hidden_state_flattened, self.embedding.weight.transpose(0, 1)) ) min_encoding_indices = torch.argmin(distances, dim=1) hidden_state_quant = self.embedding(min_encoding_indices).view(hidden_state.shape) # compute loss for embedding loss = torch.mean((hidden_state_quant.detach() - hidden_state) ** 2) + self.beta * torch.mean( (hidden_state_quant - hidden_state.detach()) ** 2 ) # preserve gradients hidden_state_quant = hidden_state + (hidden_state_quant - hidden_state).detach() # reshape back to match original input shape hidden_state_quant = hidden_state_quant.permute(0, 3, 1, 2).contiguous() return hidden_state_quant, loss, min_encoding_indices class ChameleonVQVAEEncoderConvDownsample(nn.Module): def __init__(self, in_channels): super().__init__() self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0) def forward(self, hidden_states): # no asymmetric padding in torch conv, must do it ourselves hidden_states = F.pad(hidden_states, pad=(0, 1, 0, 1), mode="constant", value=0) hidden_states = self.conv(hidden_states) return hidden_states class ChameleonVQVAEEncoderResnetBlock(nn.Module): def __init__( self, config, in_channels, out_channels=None, conv_shortcut=False, ): super().__init__() self.in_channels = in_channels self.out_channels = in_channels if out_channels is None else out_channels self.use_conv_shortcut = conv_shortcut self.norm1 = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) self.norm2 = torch.nn.GroupNorm(num_groups=32, num_channels=out_channels, eps=1e-6, affine=True) self.dropout = torch.nn.Dropout(config.dropout) self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) if self.in_channels != self.out_channels: if self.use_conv_shortcut: self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) else: self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) def forward(self, hidden_states): residual = hidden_states hidden_states = self.norm1(hidden_states) hidden_states *= torch.sigmoid(hidden_states) hidden_states = self.conv1(hidden_states) hidden_states = self.norm2(hidden_states) hidden_states *= torch.sigmoid(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.conv2(hidden_states) if self.in_channels != self.out_channels: if self.use_conv_shortcut: residual = self.conv_shortcut(residual) else: residual = self.nin_shortcut(residual) return residual + hidden_states class ChameleonVQVAEEncoderAttnBlock(nn.Module): def __init__(self, in_channels): super().__init__() self.in_channels = in_channels self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) def forward(self, hidden_states): residual = hidden_states hidden_states = self.norm(hidden_states) query_states = self.q(hidden_states) key_states = self.k(hidden_states) value_states = self.v(hidden_states) # compute attention batch_size, channels, height, width = query_states.shape query_states = query_states.reshape(batch_size, channels, height * width).permute(0, 2, 1) key_states = key_states.reshape(batch_size, channels, height * width) attn_weights = torch.bmm(query_states, key_states) attn_weights = attn_weights * (int(channels) ** (-0.5)) attn_weights = F.softmax(attn_weights, dim=2) # attend to values value_states = value_states.reshape(batch_size, channels, height * width) attn_weights = attn_weights.permute(0, 2, 1) attn_output = torch.bmm(value_states, attn_weights).reshape(batch_size, channels, height, width) attn_output = self.proj_out(attn_output) return residual + attn_output class ChameleonVQVAEEncoder(nn.Module): def __init__(self, config): super().__init__() self.num_resolutions = len(config.channel_multiplier) self.num_res_blocks = config.num_res_blocks base_channels = config.base_channels resolution = config.resolution in_channels = config.in_channels double_latent = config.double_latent latent_channels = config.latent_channels channel_multiplier = config.channel_multiplier self.conv_in = torch.nn.Conv2d(in_channels, base_channels, kernel_size=3, stride=1, padding=1) curr_res = resolution in_channel_multiplier = (1,) + tuple(channel_multiplier) self.in_channel_multiplier = in_channel_multiplier self.down = nn.ModuleList() for i_level in range(self.num_resolutions): block = nn.ModuleList() attn = nn.ModuleList() block_in = base_channels * in_channel_multiplier[i_level] block_out = base_channels * channel_multiplier[i_level] for i_block in range(self.num_res_blocks): block.append( ChameleonVQVAEEncoderResnetBlock( config=config, in_channels=block_in, out_channels=block_out, ) ) block_in = block_out if ( config.attn_resolutions is not None and curr_res in config.attn_resolutions and config.attn_type == "vanilla" ): attn.append(ChameleonVQVAEEncoderAttnBlock(block_in)) down = nn.Module() down.block = block down.attn = attn if i_level != self.num_resolutions - 1: down.downsample = ChameleonVQVAEEncoderConvDownsample(block_in) curr_res = curr_res // 2 self.down.append(down) self.mid = nn.Module() self.mid.block_1 = ChameleonVQVAEEncoderResnetBlock( config=config, in_channels=block_in, out_channels=block_in, ) self.mid.attn_1 = ChameleonVQVAEEncoderAttnBlock(block_in) if config.attn_type == "vanilla" else nn.Identity() self.mid.block_2 = ChameleonVQVAEEncoderResnetBlock( config=config, in_channels=block_in, out_channels=block_in, ) self.norm_out = torch.nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True) self.conv_out = torch.nn.Conv2d( block_in, 2 * latent_channels if double_latent else latent_channels, kernel_size=3, stride=1, padding=1, ) def forward(self, pixel_values: torch.LongTensor): # downsampling hidden_states = [self.conv_in(pixel_values)] for i_level in range(self.num_resolutions): for i_block in range(self.num_res_blocks): hidden_state = self.down[i_level].block[i_block]( hidden_states[-1], ) if len(self.down[i_level].attn) > 0: hidden_state = self.down[i_level].attn[i_block](hidden_state) hidden_states.append(hidden_state) if i_level != self.num_resolutions - 1: hidden_states.append(self.down[i_level].downsample(hidden_states[-1])) # middle last_hidden_state = hidden_states[-1] last_hidden_state = self.mid.block_1(last_hidden_state) last_hidden_state = self.mid.attn_1(last_hidden_state) last_hidden_state = self.mid.block_2(last_hidden_state) # end last_hidden_state = self.norm_out(last_hidden_state) last_hidden_state *= torch.sigmoid(last_hidden_state) last_hidden_state = self.conv_out(last_hidden_state) return last_hidden_state CHAMELEON_VQ_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ChameleonVQVAEConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( """The VQ-VAE model used in Chameleon for encoding/decoding images into discrete tokens. This model follows the "Make-a-scene: Scene-based text-to-image generation with human priors" paper from [ Oran Gafni, Adam Polyak, Oron Ashual, Shelly Sheynin, Devi Parikh, and Yaniv Taigman](https://arxiv.org/abs/2203.13131). """, CHAMELEON_VQ_START_DOCSTRING, ) class ChameleonVQVAE(PreTrainedModel): config_class = ChameleonVQVAEConfig _no_split_modules = ["ChameleonVQVAEVectorQuantizer"] def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) elif isinstance(module, nn.GroupNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, (nn.Linear, nn.Conv2d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() def __init__(self, config: ChameleonVQVAEConfig): super().__init__(config) self.encoder = ChameleonVQVAEEncoder(config) self.quantize = ChameleonVQVAEVectorQuantizer(config) self.quant_conv = torch.nn.Conv2d(config.latent_channels, config.embed_dim, 1) self.post_quant_conv = torch.nn.Conv2d(config.embed_dim, config.latent_channels, 1) self.eval() # Chameleon's VQ model is frozen def encode(self, pixel_values: torch.LongTensor): hidden_states = self.encoder(pixel_values) hidden_states = self.quant_conv(hidden_states) quant, emb_loss, indices = self.quantize(hidden_states) return quant, emb_loss, indices class ChameleonImageVocabularyMapping: """ A class for mapping discrete image tokens from VQGAN to BPE tokens. """ def __init__(self, vocab_map): self.vocab_map = vocab_map self.image_token_id = vocab_map.get("") @cached_property def val2name(self): return {v: k for k, v in self.vocab_map.items()} @cached_property def image_tokens(self): return sorted([val for name, val in self.vocab_map.items() if name.startswith("IMGIMG")]) @cached_property def bpe2img(self): img_tkn_chr_mapping = {chr(ord("A") + i): str(i) for i in range(10)} def remap(old_name: str) -> str: return "".join(img_tkn_chr_mapping.get(c, c) for c in old_name[len("IMGIMG") : -1]) return {tok: int(remap(self.val2name[tok])) for tok in self.image_tokens} @cached_property def img2bpe(self): return {v: k for k, v in self.bpe2img.items()} @cached_property def bpe2img_search_tensors(self): return torch.tensor(sorted(self.bpe2img.keys())), torch.tensor(sorted(self.bpe2img.values())) @cached_property def img2bpe_mapping_tensor(self): mapping = torch.zeros(max(self.img2bpe.keys()) + 1, dtype=torch.int) for k, v in self.img2bpe.items(): mapping[k] = v return mapping def convert_img2bpe(self, img_batch: torch.Tensor) -> torch.Tensor: device = img_batch.device img_tokens = self.img2bpe_mapping_tensor[img_batch.to("cpu")] return img_tokens.to(device) CHAMELEON_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ChameleonConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( "The bare chameleon Model outputting raw hidden-states without any specific head on top.", CHAMELEON_START_DOCSTRING, ) class ChameleonPreTrainedModel(PreTrainedModel): config_class = ChameleonConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["ChameleonDecoderLayer", "ChameleonSwinDecoderLayer"] _skip_keys_device_placement = ["past_key_values", "causal_mask"] _supports_flash_attn_2 = True _supports_sdpa = True _supports_quantized_cache = True _supports_cache_class = True _supports_static_cache = True _supports_param_buffer_assignment = False def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, ChameleonVQVAE): module.apply(module._init_weights) elif isinstance(module, (nn.Linear, nn.Conv2d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() CHAMELEON_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)): The tensors corresponding to the input images. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ChameleonImageProcessor.__call__`] for details. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`Cache`, *optional*): Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. Should always be a [`~cache_utils.Cache`] instance and the model will output the same cache instance. If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length. """ @add_start_docstrings( "The bare chameleon Model outputting raw hidden-states without any specific head on top.", CHAMELEON_START_DOCSTRING, ) class ChameleonModel(ChameleonPreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`ChameleonDecoderLayer`] Args: config: ChameleonConfig """ def __init__(self, config: ChameleonConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.vocabulary_mapping = ChameleonImageVocabularyMapping(config.vocabulary_map) decoder_layer = ChameleonDecoderLayer if not self.config.swin_norm else ChameleonSwinDecoderLayer self.layers = nn.ModuleList( [decoder_layer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.norm = ChameleonRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.vqmodel = ChameleonVQVAE(config.vq_config) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value def get_image_tokens(self, pixel_values: torch.FloatTensor): """ Tokenizes images into discrete tokens with VQGAN module. Converts obtained image tokens into BPE tokens and wraps with "boi" and "eoi" special tokens. Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)): The tensors corresponding to the input images. """ batch_size = pixel_values.shape[0] _, _, image_toks = self.vqmodel.encode(pixel_values) bpe_toks = self.vocabulary_mapping.convert_img2bpe(image_toks) bpe_toks = bpe_toks.view(batch_size, -1) return bpe_toks @add_start_docstrings_to_model_forward(CHAMELEON_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPast, config_class=_CONFIG_FOR_DOC, expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, input_ids: torch.LongTensor = None, pixel_values: torch.FloatTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.gradient_checkpointing and self.training and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." ) use_cache = False if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError( "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" ) if pixel_values is not None and inputs_embeds is not None: raise ValueError( "You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one" ) if pixel_values is not None: image_tokens = self.get_image_tokens(pixel_values) special_image_mask = input_ids == self.vocabulary_mapping.image_token_id image_tokens = image_tokens.to(input_ids.device, input_ids.dtype) input_ids = input_ids.masked_scatter(special_image_mask, image_tokens) if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = self._update_causal_mask( attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions ) # embed positions hidden_states = inputs_embeds # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None next_decoder_cache = None for decoder_layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, causal_mask, position_ids, past_key_values, output_attentions, use_cache, cache_position, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache = layer_outputs[2 if output_attentions else 1] if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = None if use_cache: next_cache = next_decoder_cache if not return_dict: return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, ) # Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask def _update_causal_mask( self, attention_mask: torch.Tensor, input_tensor: torch.Tensor, cache_position: torch.Tensor, past_key_values: Cache, output_attentions: bool, ): # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static # KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes. # (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using # `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114 if self.config._attn_implementation == "flash_attention_2": if attention_mask is not None and 0.0 in attention_mask: return attention_mask return None # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail # to infer the attention mask. past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 using_static_cache = isinstance(past_key_values, StaticCache) # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions: if AttentionMaskConverter._ignore_causal_mask_sdpa( attention_mask, inputs_embeds=input_tensor, past_key_values_length=past_seen_tokens, is_training=self.training, ): return None dtype, device = input_tensor.dtype, input_tensor.device min_dtype = torch.finfo(dtype).min sequence_length = input_tensor.shape[1] if using_static_cache: target_length = past_key_values.get_max_length() else: target_length = ( attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else past_seen_tokens + sequence_length + 1 ) # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). causal_mask = _prepare_4d_causal_attention_mask_with_cache_position( attention_mask, sequence_length=sequence_length, target_length=target_length, dtype=dtype, device=device, min_dtype=min_dtype, cache_position=cache_position, batch_size=input_tensor.shape[0], ) if ( self.config._attn_implementation == "sdpa" and attention_mask is not None and attention_mask.device.type == "cuda" and not output_attentions ): # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. # Details: https://github.com/pytorch/pytorch/issues/110213 causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) return causal_mask @add_start_docstrings( "Chameleon Model with a head on top used for outputting logits for next token prediction.", CHAMELEON_START_DOCSTRING, ) class ChameleonForConditionalGeneration(ChameleonPreTrainedModel): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): super().__init__(config) self.model = ChameleonModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model @add_start_docstrings_to_model_forward(CHAMELEON_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, pixel_values: torch.FloatTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> from transformers import ChameleonProcessor, ChameleonForConditionalGeneration >>> import torch >>> import requests >>> from PIL import Image >>> model = ChameleonForConditionalGeneration.from_pretrained("facebook/chameleon-7b", torch_dtype=torch.bfloat16) >>> processor = ChameleonProcessor.from_pretrained("facebook/chameleon-7b") >>> prompt = "I used to know a lot about constellations when I was younger, but as I grew older, I forgot most of what I knew. These are the only two constellations that I really remember now.I would like for you to tell me about 3 more constellations and give me a little bit of history about the constellation." >>> image = Image.open(requests.get("https://nineplanets.org/wp-content/uploads/2020/12/the-big-dipper-1.jpg", stream=True).raw) >>> image_2 = Image.open(requests.get("https://www.kxan.com/wp-content/uploads/sites/40/2020/10/ORION.jpg", stream=True).raw) >>> inputs = processor(prompt, images=[image, image_2], return_tensors="pt").to(model.device, torch.bfloat16) >>> generated_ids = model.generate(**inputs, max_new_tokens=100, do_sample=False) >>> processor.batch_decode(generated_ids, skip_special_tokens=True)[0] ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, pixel_values=pixel_values, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, ) hidden_states = outputs[0] logits = self.lm_head(hidden_states) logits = logits.float() # Disallow image tokens which does not include special begin-image and end-image tokens image_tokens = self.model.vocabulary_mapping.image_tokens logits[:, :, image_tokens] = torch.finfo(logits.dtype).min loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, pixel_values=None, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, position_ids=None, use_cache=True, **kwargs, ): # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens # Exception 1: when passing input_embeds, input_ids may be missing entries # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here if past_key_values is not None: if inputs_embeds is not None: # Exception 1 input_ids = input_ids[:, -cache_position.shape[0] :] elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2) input_ids = input_ids[:, cache_position] if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -input_ids.shape[1] :] # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and cache_position[0] == 0: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids.contiguous()} # `contiguous()` needed for compilation use cases if cache_position[0] == 0: # If we're in cached decoding stage, pixel values should be `None` because input ids do not contain special image token anymore # Otherwise we need pixel values to be passed to model model_inputs["pixel_values"] = pixel_values model_inputs.update( { "position_ids": position_ids, "cache_position": cache_position, "past_key_values": past_key_values, "use_cache": use_cache, "attention_mask": attention_mask, } ) return model_inputs