# coding=utf-8 # Copyright 2022 KAIST and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch GLPN model.""" import math from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from ...activations import ACT2FN from ...modeling_outputs import BaseModelOutput, DepthEstimatorOutput from ...modeling_utils import PreTrainedModel from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_glpn import GLPNConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "GLPNConfig" # Base docstring _CHECKPOINT_FOR_DOC = "vinvino02/glpn-kitti" _EXPECTED_OUTPUT_SHAPE = [1, 512, 15, 20] # Copied from transformers.models.beit.modeling_beit.drop_path def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return input keep_prob = 1 - drop_prob shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) random_tensor.floor_() # binarize output = input.div(keep_prob) * random_tensor return output # Copied from transformers.models.segformer.modeling_segformer.SegformerDropPath class GLPNDropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob: Optional[float] = None) -> None: super().__init__() self.drop_prob = drop_prob def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return drop_path(hidden_states, self.drop_prob, self.training) def extra_repr(self) -> str: return "p={}".format(self.drop_prob) # Copied from transformers.models.segformer.modeling_segformer.SegformerOverlapPatchEmbeddings class GLPNOverlapPatchEmbeddings(nn.Module): """Construct the overlapping patch embeddings.""" def __init__(self, patch_size, stride, num_channels, hidden_size): super().__init__() self.proj = nn.Conv2d( num_channels, hidden_size, kernel_size=patch_size, stride=stride, padding=patch_size // 2, ) self.layer_norm = nn.LayerNorm(hidden_size) def forward(self, pixel_values): embeddings = self.proj(pixel_values) _, _, height, width = embeddings.shape # (batch_size, num_channels, height, width) -> (batch_size, num_channels, height*width) -> (batch_size, height*width, num_channels) # this can be fed to a Transformer layer embeddings = embeddings.flatten(2).transpose(1, 2) embeddings = self.layer_norm(embeddings) return embeddings, height, width # Copied from transformers.models.segformer.modeling_segformer.SegformerEfficientSelfAttention class GLPNEfficientSelfAttention(nn.Module): """SegFormer's efficient self-attention mechanism. Employs the sequence reduction process introduced in the [PvT paper](https://arxiv.org/abs/2102.12122).""" def __init__(self, config, hidden_size, num_attention_heads, sequence_reduction_ratio): super().__init__() self.hidden_size = hidden_size self.num_attention_heads = num_attention_heads if self.hidden_size % self.num_attention_heads != 0: raise ValueError( f"The hidden size ({self.hidden_size}) is not a multiple of the number of attention " f"heads ({self.num_attention_heads})" ) self.attention_head_size = int(self.hidden_size / self.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(self.hidden_size, self.all_head_size) self.key = nn.Linear(self.hidden_size, self.all_head_size) self.value = nn.Linear(self.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.sr_ratio = sequence_reduction_ratio if sequence_reduction_ratio > 1: self.sr = nn.Conv2d( hidden_size, hidden_size, kernel_size=sequence_reduction_ratio, stride=sequence_reduction_ratio ) self.layer_norm = nn.LayerNorm(hidden_size) def transpose_for_scores(self, hidden_states): new_shape = hidden_states.size()[:-1] + (self.num_attention_heads, self.attention_head_size) hidden_states = hidden_states.view(new_shape) return hidden_states.permute(0, 2, 1, 3) def forward( self, hidden_states, height, width, output_attentions=False, ): query_layer = self.transpose_for_scores(self.query(hidden_states)) if self.sr_ratio > 1: batch_size, seq_len, num_channels = hidden_states.shape # Reshape to (batch_size, num_channels, height, width) hidden_states = hidden_states.permute(0, 2, 1).reshape(batch_size, num_channels, height, width) # Apply sequence reduction hidden_states = self.sr(hidden_states) # Reshape back to (batch_size, seq_len, num_channels) hidden_states = hidden_states.reshape(batch_size, num_channels, -1).permute(0, 2, 1) hidden_states = self.layer_norm(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs # Copied from transformers.models.segformer.modeling_segformer.SegformerSelfOutput class GLPNSelfOutput(nn.Module): def __init__(self, config, hidden_size): super().__init__() self.dense = nn.Linear(hidden_size, hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states # Copied from transformers.models.segformer.modeling_segformer.SegformerAttention with Segformer->GLPN class GLPNAttention(nn.Module): def __init__(self, config, hidden_size, num_attention_heads, sequence_reduction_ratio): super().__init__() self.self = GLPNEfficientSelfAttention( config=config, hidden_size=hidden_size, num_attention_heads=num_attention_heads, sequence_reduction_ratio=sequence_reduction_ratio, ) self.output = GLPNSelfOutput(config, hidden_size=hidden_size) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward(self, hidden_states, height, width, output_attentions=False): self_outputs = self.self(hidden_states, height, width, output_attentions) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.segformer.modeling_segformer.SegformerDWConv class GLPNDWConv(nn.Module): def __init__(self, dim=768): super().__init__() self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim) def forward(self, hidden_states, height, width): batch_size, seq_len, num_channels = hidden_states.shape hidden_states = hidden_states.transpose(1, 2).view(batch_size, num_channels, height, width) hidden_states = self.dwconv(hidden_states) hidden_states = hidden_states.flatten(2).transpose(1, 2) return hidden_states # Copied from transformers.models.segformer.modeling_segformer.SegformerMixFFN with Segformer->GLPN class GLPNMixFFN(nn.Module): def __init__(self, config, in_features, hidden_features=None, out_features=None): super().__init__() out_features = out_features or in_features self.dense1 = nn.Linear(in_features, hidden_features) self.dwconv = GLPNDWConv(hidden_features) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act self.dense2 = nn.Linear(hidden_features, out_features) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, height, width): hidden_states = self.dense1(hidden_states) hidden_states = self.dwconv(hidden_states, height, width) hidden_states = self.intermediate_act_fn(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.dense2(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states # Copied from transformers.models.segformer.modeling_segformer.SegformerLayer with Segformer->GLPN class GLPNLayer(nn.Module): """This corresponds to the Block class in the original implementation.""" def __init__(self, config, hidden_size, num_attention_heads, drop_path, sequence_reduction_ratio, mlp_ratio): super().__init__() self.layer_norm_1 = nn.LayerNorm(hidden_size) self.attention = GLPNAttention( config, hidden_size=hidden_size, num_attention_heads=num_attention_heads, sequence_reduction_ratio=sequence_reduction_ratio, ) self.drop_path = GLPNDropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.layer_norm_2 = nn.LayerNorm(hidden_size) mlp_hidden_size = int(hidden_size * mlp_ratio) self.mlp = GLPNMixFFN(config, in_features=hidden_size, hidden_features=mlp_hidden_size) def forward(self, hidden_states, height, width, output_attentions=False): self_attention_outputs = self.attention( self.layer_norm_1(hidden_states), # in GLPN, layernorm is applied before self-attention height, width, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights # first residual connection (with stochastic depth) attention_output = self.drop_path(attention_output) hidden_states = attention_output + hidden_states mlp_output = self.mlp(self.layer_norm_2(hidden_states), height, width) # second residual connection (with stochastic depth) mlp_output = self.drop_path(mlp_output) layer_output = mlp_output + hidden_states outputs = (layer_output,) + outputs return outputs class GLPNEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config # stochastic depth decay rule dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))] # patch embeddings embeddings = [] for i in range(config.num_encoder_blocks): embeddings.append( GLPNOverlapPatchEmbeddings( patch_size=config.patch_sizes[i], stride=config.strides[i], num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1], hidden_size=config.hidden_sizes[i], ) ) self.patch_embeddings = nn.ModuleList(embeddings) # Transformer blocks blocks = [] cur = 0 for i in range(config.num_encoder_blocks): # each block consists of layers layers = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i]): layers.append( GLPNLayer( config, hidden_size=config.hidden_sizes[i], num_attention_heads=config.num_attention_heads[i], drop_path=dpr[cur + j], sequence_reduction_ratio=config.sr_ratios[i], mlp_ratio=config.mlp_ratios[i], ) ) blocks.append(nn.ModuleList(layers)) self.block = nn.ModuleList(blocks) # Layer norms self.layer_norm = nn.ModuleList( [nn.LayerNorm(config.hidden_sizes[i]) for i in range(config.num_encoder_blocks)] ) def forward( self, pixel_values, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None batch_size = pixel_values.shape[0] hidden_states = pixel_values for idx, x in enumerate(zip(self.patch_embeddings, self.block, self.layer_norm)): embedding_layer, block_layer, norm_layer = x # first, obtain patch embeddings hidden_states, height, width = embedding_layer(hidden_states) # second, send embeddings through blocks for i, blk in enumerate(block_layer): layer_outputs = blk(hidden_states, height, width, output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) # third, apply layer norm hidden_states = norm_layer(hidden_states) # fourth, optionally reshape back to (batch_size, num_channels, height, width) hidden_states = hidden_states.reshape(batch_size, height, width, -1).permute(0, 3, 1, 2).contiguous() if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class GLPNPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = GLPNConfig base_model_prefix = "glpn" main_input_name = "pixel_values" _no_split_modules = [] # Copied from transformers.models.segformer.modeling_segformer.SegformerPreTrainedModel._init_weights def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) GLPN_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`GLPNConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ GLPN_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`GLPNImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare GLPN encoder (Mix-Transformer) outputting raw hidden-states without any specific head on top.", GLPN_START_DOCSTRING, ) class GLPNModel(GLPNPreTrainedModel): # Copied from transformers.models.segformer.modeling_segformer.SegformerModel.__init__ with Segformer->GLPN def __init__(self, config): super().__init__(config) self.config = config # hierarchical Transformer encoder self.encoder = GLPNEncoder(config) # Initialize weights and apply final processing self.post_init() def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(GLPN_INPUTS_DOCSTRING.format("(batch_size, sequence_length)")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) # Copied from transformers.models.segformer.modeling_segformer.SegformerModel.forward def forward( self, pixel_values: torch.FloatTensor, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_outputs = self.encoder( pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] if not return_dict: return (sequence_output,) + encoder_outputs[1:] return BaseModelOutput( last_hidden_state=sequence_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class GLPNSelectiveFeatureFusion(nn.Module): """ Selective Feature Fusion module, as explained in the [paper](https://arxiv.org/abs/2201.07436) (section 3.4). This module adaptively selects and integrates local and global features by attaining an attention map for each feature. """ def __init__(self, in_channel=64): super().__init__() self.convolutional_layer1 = nn.Sequential( nn.Conv2d(in_channels=int(in_channel * 2), out_channels=in_channel, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(in_channel), nn.ReLU(), ) self.convolutional_layer2 = nn.Sequential( nn.Conv2d(in_channels=in_channel, out_channels=int(in_channel / 2), kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(int(in_channel / 2)), nn.ReLU(), ) self.convolutional_layer3 = nn.Conv2d( in_channels=int(in_channel / 2), out_channels=2, kernel_size=3, stride=1, padding=1 ) self.sigmoid = nn.Sigmoid() def forward(self, local_features, global_features): # concatenate features along the channel dimension features = torch.cat((local_features, global_features), dim=1) # pass through convolutional layers features = self.convolutional_layer1(features) features = self.convolutional_layer2(features) features = self.convolutional_layer3(features) # apply sigmoid to get two-channel attention map attn = self.sigmoid(features) # construct hybrid features by adding element-wise hybrid_features = local_features * attn[:, 0, :, :].unsqueeze(1) + global_features * attn[ :, 1, :, : ].unsqueeze(1) return hybrid_features class GLPNDecoderStage(nn.Module): def __init__(self, in_channels, out_channels): super().__init__() should_skip = in_channels == out_channels self.convolution = nn.Conv2d(in_channels, out_channels, kernel_size=1) if not should_skip else nn.Identity() self.fusion = GLPNSelectiveFeatureFusion(out_channels) self.upsample = nn.Upsample(scale_factor=2, mode="bilinear", align_corners=False) def forward(self, hidden_state, residual=None): hidden_state = self.convolution(hidden_state) if residual is not None: hidden_state = self.fusion(hidden_state, residual) hidden_state = self.upsample(hidden_state) return hidden_state hidden_state = self.upsample(hidden_state) return hidden_state class GLPNDecoder(nn.Module): def __init__(self, config): super().__init__() # we use features from end -> start reserved_hidden_sizes = config.hidden_sizes[::-1] out_channels = config.decoder_hidden_size self.stages = nn.ModuleList( [GLPNDecoderStage(hidden_size, out_channels) for hidden_size in reserved_hidden_sizes] ) # don't fuse in first stage self.stages[0].fusion = None self.final_upsample = nn.Upsample(scale_factor=2, mode="bilinear", align_corners=False) def forward(self, hidden_states: List[torch.Tensor]) -> List[torch.Tensor]: stage_hidden_states = [] stage_hidden_state = None for hidden_state, stage in zip(hidden_states[::-1], self.stages): stage_hidden_state = stage(hidden_state, stage_hidden_state) stage_hidden_states.append(stage_hidden_state) stage_hidden_states[-1] = self.final_upsample(stage_hidden_state) return stage_hidden_states class SiLogLoss(nn.Module): r""" Implements the Scale-invariant log scale loss [Eigen et al., 2014](https://arxiv.org/abs/1406.2283). $$L=\frac{1}{n} \sum_{i} d_{i}^{2}-\frac{1}{2 n^{2}}\left(\sum_{i} d_{i}^{2}\right)$$ where $d_{i}=\log y_{i}-\log y_{i}^{*}$. """ def __init__(self, lambd=0.5): super().__init__() self.lambd = lambd def forward(self, pred, target): valid_mask = (target > 0).detach() diff_log = torch.log(target[valid_mask]) - torch.log(pred[valid_mask]) loss = torch.sqrt(torch.pow(diff_log, 2).mean() - self.lambd * torch.pow(diff_log.mean(), 2)) return loss class GLPNDepthEstimationHead(nn.Module): def __init__(self, config): super().__init__() self.config = config channels = config.decoder_hidden_size self.head = nn.Sequential( nn.Conv2d(channels, channels, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=False), nn.Conv2d(channels, 1, kernel_size=3, stride=1, padding=1), ) def forward(self, hidden_states: List[torch.Tensor]) -> torch.Tensor: # use last features of the decoder hidden_states = hidden_states[self.config.head_in_index] hidden_states = self.head(hidden_states) predicted_depth = torch.sigmoid(hidden_states) * self.config.max_depth predicted_depth = predicted_depth.squeeze(dim=1) return predicted_depth @add_start_docstrings( """GLPN Model transformer with a lightweight depth estimation head on top e.g. for KITTI, NYUv2.""", GLPN_START_DOCSTRING, ) class GLPNForDepthEstimation(GLPNPreTrainedModel): def __init__(self, config): super().__init__(config) self.glpn = GLPNModel(config) self.decoder = GLPNDecoder(config) self.head = GLPNDepthEstimationHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(GLPN_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=DepthEstimatorOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: torch.FloatTensor, labels: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], DepthEstimatorOutput]: r""" labels (`torch.FloatTensor` of shape `(batch_size, height, width)`, *optional*): Ground truth depth estimation maps for computing the loss. Returns: Examples: ```python >>> from transformers import AutoImageProcessor, GLPNForDepthEstimation >>> import torch >>> import numpy as np >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("vinvino02/glpn-kitti") >>> model = GLPNForDepthEstimation.from_pretrained("vinvino02/glpn-kitti") >>> # prepare image for the model >>> inputs = image_processor(images=image, return_tensors="pt") >>> with torch.no_grad(): ... outputs = model(**inputs) ... predicted_depth = outputs.predicted_depth >>> # interpolate to original size >>> prediction = torch.nn.functional.interpolate( ... predicted_depth.unsqueeze(1), ... size=image.size[::-1], ... mode="bicubic", ... align_corners=False, ... ) >>> # visualize the prediction >>> output = prediction.squeeze().cpu().numpy() >>> formatted = (output * 255 / np.max(output)).astype("uint8") >>> depth = Image.fromarray(formatted) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) outputs = self.glpn( pixel_values, output_attentions=output_attentions, output_hidden_states=True, # we need the intermediate hidden states return_dict=return_dict, ) hidden_states = outputs.hidden_states if return_dict else outputs[1] out = self.decoder(hidden_states) predicted_depth = self.head(out) loss = None if labels is not None: loss_fct = SiLogLoss() loss = loss_fct(predicted_depth, labels) if not return_dict: if output_hidden_states: output = (predicted_depth,) + outputs[1:] else: output = (predicted_depth,) + outputs[2:] return ((loss,) + output) if loss is not None else output return DepthEstimatorOutput( loss=loss, predicted_depth=predicted_depth, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=outputs.attentions, )