# This code was adapted from https://github.com/lucidrains/flamingo-pytorch licensed under the MIT License. # # MIT License # # Copyright (c) 2020 The Google AI Language Team Authors, The HuggingFace Inc. team and github/lonePatient # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """ Generic interface to various configurations of the Perceiver Resampler, that simply takes in a series of (potentially time-indexed) contextual embeddings, and "resamples" (compresses) them down to a pre-specified number of latents! Note that the Perceiver in general resamples based solely off the *long-range* context; there's a nice opportunity here to prime the Perceiver Resampler with say a single layer's worth of language embeddings (the target domain), and use that to softly "retrieve & compress" what we need --> this would be a novel contribution we should explore. References: - DeepMind's Flamingo: https://www.deepmind.com/blog/tackling-multiple-tasks-with-a-single-visual-language-model - Code borrowed w/ love from: https://github.com/lucidrains/flamingo-pytorch """ from typing import Optional, Tuple import tensorflow as tf from ...modeling_tf_utils import shape_list from .configuration_idefics import IdeficsConfig class TFIdeficsPerceiverResampler(tf.keras.layers.Layer): def __init__( self, config: IdeficsConfig, embed_dim: int, depth: int, n_heads: int, head_dim: int, n_latents: int, **kwargs ) -> None: """ Instantiates a Perceiver Resampler that operates over a sequence of embeddings (say from a ResNet or ViT or MAE) of a given dimension, performs `depth` blocks of cross-attention with a fixed `n_latents` inputs, then returns a Tensor of shape [bsz, n_latents, embed_dim]. :param embed_dim: Dimensionality of embeddings being fed to the Perceiver Resampler (also dimensionality of latent embeddings *returned* by the Perceiver Resampler. Could be e.g., VIT embed_dim, ResNet pool dim, and so on. Args: config (`IdeficsConfig`): config object embed_dim (`int`): The size of each embedding vector depth (`int`): Depth of the Perceiver Resampler (Transformer w/ cross attention). Should be shallow (< 3). n_heads (`int`): Number of heads in each Transformer block (for multi-headed self-attention). head_dim (`int`): Dimensionality of each head projection in the Transformer block. n_latents (`int`): Number of latent embeddings to resample ("compress") the input sequence to (usually < 128). """ super().__init__(**kwargs) self.embed_dim, self.n_heads, self.head_dim, self.n_latents = embed_dim, n_heads, head_dim, n_latents self.qk_layer_norms = config.perceiver_config.qk_layer_norms_perceiver self.intermediate_dim = ( self.embed_dim * 4 if not hasattr(config.vision_config, "embed_dim") else config.vision_config.embed_dim * 4 ) # Create Transformer Blocks self.blocks = [] for i in range(depth): self.blocks.append( [ TFIdeficsPerceiverAttention( self.embed_dim, self.n_heads, self.head_dim, self.qk_layer_norms, name=f"blocks.{i}.0" ), TFIdeficsMLP(self.intermediate_dim, config, name=f"blocks.{i}.1"), ] ) self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm") def build(self, input_shape): # Create Latents for Perceiver self.latents = self.add_weight( shape=(self.n_latents, self.embed_dim), initializer="random_normal", trainable=True, name="latents" ) super().build(input_shape) def call(self, context: tf.Tensor) -> tf.Tensor: """Resample arbitrary length context & *compress* down to self.n_latents latent embeddings""" # tf.repeat(self.latents, "seq embed -> bsz seq embed", bsz=context.shape[0]) latents = tf.expand_dims(self.latents, axis=0) latents = tf.tile(latents, [tf.shape(context)[0], 1, 1]) # Feed through Perceiver Attention blocks... for attn, ff in self.blocks: latents = attn(context, latents) + latents latents = ff(latents) + latents return self.layer_norm(latents) class TFIdeficsPerceiverAttention(tf.keras.layers.Layer): def __init__(self, embed_dim: int, n_heads: int, head_dim: int, qk_layer_norms: bool, **kwargs) -> None: """Perceiver Cross-Attention Module --> let long-form inputs be `context`, resampled embeddings be `latents`""" super().__init__(**kwargs) self.embed_dim, self.n_heads, self.head_dim = embed_dim, n_heads, head_dim self.qk_layer_norms = qk_layer_norms # Normalization & Scaling self.context_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="context_layer_norm") self.latents_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="latents_layer_norm") if self.qk_layer_norms: self.q_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="q_layer_norm") self.k_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="k_layer_norm") self.qk_scale = self.head_dim**-0.5 # Q, K, V Projection (no bias -- detail from Perceiver/Flamingo Papers). self.q_proj = tf.keras.layers.Dense(self.n_heads * self.head_dim, use_bias=False, name="q_proj") self.k_proj = tf.keras.layers.Dense(self.n_heads * self.head_dim, use_bias=False, name="k_proj") self.v_proj = tf.keras.layers.Dense(self.n_heads * self.head_dim, use_bias=False, name="v_proj") self.output_proj = tf.keras.layers.Dense(embed_dim, use_bias=False, name="output_proj") def call(self, context: tf.Tensor, latents: tf.Tensor) -> tf.Tensor: """ Runs Perceiver Self-Attention, with special (context, latents) appended along the `seq` dimension! Args: context (`tf.Tensor`): Tensor of shape `[bsz, seq, embed_dim]` representing long-form context to resample. latents (`tf.Tensor`): Tensor of shape `[bsz, n_latents, embed_dim]` representing fixed length latents to compress to. Returns: `tf.Tensor`: Tensor of shape `[bsz, n_latents, embed_dim]` representing attention over latents w/ cross from context. """ context = self.context_layer_norm(context) latents = self.latents_layer_norm(latents) batch_size, seq_length, embed_dim = shape_list(context) # Query, Key, Value Projections --> Note that in Flamingo, latents are *concatenated* with context prior to attn! # Note: This results in queries w/ `seq = n_latents`, and keys, values with `seq = len(context) + n_latents` q = self.q_proj(latents) k = self.k_proj(tf.concat([context, latents], axis=-2)) v = self.v_proj(tf.concat([context, latents], axis=-2)) # Multiheaded Self-Attention w/ stable softmax (subtract per-row max -- `amax` -- before softmax call) # =>> `attn` should be a 2D matrix of shape [n_latents x (context + n_latents)] q, k, v = [ tf.transpose(tf.reshape(x, (batch_size, x.shape[1], self.n_heads, self.head_dim)), perm=[0, 2, 1, 3]) for x in (q, k, v) ] if self.qk_layer_norms: q = self.q_layer_norm(q) k = self.k_layer_norm(k) scores = tf.einsum("... i d, ... j d -> ... i j", q * self.qk_scale, k) stabilized_scores = scores - tf.reduce_max(scores, axis=-1, keepdims=True) attn = tf.nn.softmax(stabilized_scores, axis=-1) # Attend & project back to output... resampled = tf.einsum("... i j, ... j d -> ... i d", attn, v) return self.output_proj( tf.reshape(tf.transpose(resampled, perm=[0, 2, 1, 3]), (batch_size, -1, self.n_heads * self.head_dim)) ) class TFIdeficsMLP(tf.keras.layers.Layer): def __init__(self, intermediate_size, config: IdeficsConfig, **kwargs): """Simple MLP block with intermediate_size and embedding size""" super().__init__(**kwargs) self.embed_dim = config.vision_config.embed_dim self.ln = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="ln") self.fc = tf.keras.layers.Dense(intermediate_size, use_bias=False, name="fc") self.act = tf.keras.layers.ReLU(name="act") self.c_proj = tf.keras.layers.Dense(self.embed_dim, use_bias=False, name="c_proj") def call(self, hidden_states: Optional[Tuple[tf.Tensor]]) -> tf.Tensor: hidden_states = self.ln(hidden_states) hidden_states = self.fc(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.c_proj(hidden_states) return hidden_states