# coding=utf-8 # Copyright 2021 The OpenAI Team Authors and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TF IdeficsVision model: a copy of CLIPVisionModel using a simpler config object""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import TFBaseModelOutput, TFBaseModelOutputWithPooling from ...modeling_tf_utils import TFPreTrainedModel, shape_list from ...tf_utils import flatten from ...utils import ModelOutput, logging from .configuration_idefics import IdeficsVisionConfig logger = logging.get_logger(__name__) @dataclass class TFIdeficsVisionModelOutput(ModelOutput): """ Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states. Args: image_embeds (`tf.Tensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): The image embeddings obtained by applying the projection layer to the pooler_output. last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ image_embeds: Optional[tf.Tensor] = None last_hidden_state: tf.Tensor = None hidden_states: Optional[Tuple[tf.Tensor]] = None attentions: Optional[Tuple[tf.Tensor]] = None class TFIdeficsVisionEmbeddings(tf.keras.layers.Layer): def __init__(self, config: IdeficsVisionConfig, **kwargs): super().__init__(**kwargs) self.config = config self.embed_dim = config.hidden_size self.image_size = config.image_size self.patch_size = config.patch_size self.patch_embedding = tf.keras.layers.Conv2D( filters=self.embed_dim, kernel_size=self.patch_size, strides=self.patch_size, use_bias=False, padding="valid", data_format="channels_last", name="patch_embedding", ) self.num_patches = (self.image_size // self.patch_size) ** 2 self.num_positions = self.num_patches + 1 self.position_embedding = tf.keras.layers.Embedding( self.num_positions, self.embed_dim, name="position_embedding" ) # self.position_ids = tf.range(self.num_positions)[tf.newaxis, :] def interpolate_pos_encoding(self, embeddings: tf.Tensor, height: int, width: int) -> tf.Tensor: num_patches = shape_list(embeddings)[1] - 1 pos_embed = self.position_embedding(self.position_ids) num_positions = shape_list(pos_embed)[1] - 1 if num_patches == num_positions and height == width: return pos_embed class_pos_embed = pos_embed[:, 0] patch_pos_embed = pos_embed[:, 1:] embed_dim = shape_list(embeddings)[-1] num_h_patches = height // self.config.patch_size num_w_patches = width // self.config.patch_size num_h_patches, num_w_patches = num_h_patches + 0.1, num_w_patches + 0.1 sqrt_num_positions = math.sqrt(float(num_positions)) patch_pos_embed = tf.reshape(patch_pos_embed, (1, int(sqrt_num_positions), int(sqrt_num_positions), embed_dim)) scale_height = num_h_patches / sqrt_num_positions scale_width = num_w_patches / sqrt_num_positions original_height = tf.cast(tf.shape(patch_pos_embed)[1], tf.float32) original_width = tf.cast(tf.shape(patch_pos_embed)[2], tf.float32) # Apply scaling new_height = tf.cast(original_height * scale_height, tf.int32) new_width = tf.cast(original_width * scale_width, tf.int32) patch_pos_embed = tf.image.resize( patch_pos_embed, size=[new_height, new_width], method=tf.image.ResizeMethod.BICUBIC ) if ( int(num_h_patches) != shape_list(patch_pos_embed)[-3] or int(num_w_patches) != shape_list(patch_pos_embed)[-2] ): raise ValueError( f"Number of patches for images ({int(num_h_patches), int(num_w_patches)}) don't match the " f"shape of position embedding ({shape_list(patch_pos_embed)[-2], shape_list(patch_pos_embed)[-1]})" ) patch_pos_embed = tf.reshape(patch_pos_embed, (1, -1, embed_dim)) return tf.concat((class_pos_embed[tf.newaxis, :], patch_pos_embed), axis=1) def call(self, pixel_values: tf.Tensor, interpolate_pos_encoding: bool = False) -> tf.Tensor: # Input `pixel_values` is NCHW format which doesn't run on CPU so first thing we do is # transpose it to change it to NHWC. We don't care to transpose it back because # the Conv2D layer is only hit once for each query if isinstance(pixel_values, dict): pixel_values = pixel_values["pixel_values"] pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1)) batch_size, height, width, num_channels = shape_list(pixel_values) if not interpolate_pos_encoding: if height != self.image_size or width != self.image_size: raise ValueError( f"Input image size ({height}*{width}) doesn't match model" f" ({self.image_size}*{self.image_size}). You should try to set `interpolate_pos_encoding=True`" ) patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid] # Change the 2D spatial dimensions to a single temporal dimension. # shape = (batch_size, num_patches, out_channels=embed_dim) patch_embeds = flatten(patch_embeds, 1, 2) class_embeds = tf.broadcast_to( self.class_embedding[tf.newaxis, tf.newaxis, :], [batch_size, 1, self.embed_dim] ) embeddings = tf.concat([class_embeds, patch_embeds], axis=1) # add positional encoding to each token if interpolate_pos_encoding: embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width) else: embeddings = embeddings + self.position_embedding(self.position_ids) return embeddings def build(self, input_shape=None): if self.built: return self.built = True self.position_ids = tf.range(self.num_positions, name="self.position_ids")[tf.newaxis, :] self.class_embedding = self.add_weight(shape=(self.embed_dim,), name="class_embedding") if getattr(self, "patch_embedding", None) is not None: with tf.name_scope(self.patch_embedding.name): self.patch_embedding.build([None, None, None, self.config.num_channels]) if getattr(self, "position_embedding", None) is not None: with tf.name_scope(self.position_embedding.name): self.position_embedding.build(None) class TFIdeficsVisionAttention(tf.keras.layers.Layer): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config, **kwargs): super().__init__(**kwargs) self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.scale = self.head_dim**-0.5 self.dropout = config.attention_dropout self.k_proj = tf.keras.layers.Dense(self.embed_dim, name="k_proj") self.v_proj = tf.keras.layers.Dense(self.embed_dim, name="v_proj") self.q_proj = tf.keras.layers.Dense(self.embed_dim, name="q_proj") self.out_proj = tf.keras.layers.Dense(self.embed_dim, name="out_proj") def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int): return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), perm=[0, 2, 1, 3]) def call( self, hidden_states: tf.Tensor, attention_mask: Optional[tf.Tensor] = None, causal_attention_mask: Optional[tf.Tensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[tf.Tensor, Optional[tf.Tensor], Optional[Tuple[tf.Tensor]]]: """Input shape: Batch x Time x Channel""" bsz, tgt_len, embed_dim = shape_list(hidden_states) # get query proj query_states = self.q_proj(hidden_states) * self.scale key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape) key_states = tf.reshape(key_states, proj_shape) value_states = tf.reshape(value_states, proj_shape) src_len = shape_list(key_states)[1] attn_weights = tf.linalg.matmul(query_states, key_states, transpose_b=True) tf.debugging.assert_equal( tf.shape(attn_weights), [bsz * self.num_heads, tgt_len, src_len], message=f"Attention weights should be of size {[bsz * self.num_heads, tgt_len, src_len]}, but is {tf.shape(attn_weights)}", ) # apply the causal_attention_mask first if causal_attention_mask is not None: if shape_list(causal_attention_mask) != [bsz, 1, tgt_len, src_len]: raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" f" {shape_list(causal_attention_mask)}" ) attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + causal_attention_mask attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) if attention_mask is not None: if shape_list(attention_mask) != [bsz, 1, tgt_len, src_len]: raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {shape_list(attention_mask)}" ) attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_weights = tf.nn.softmax(attn_weights, axis=-1) if output_attentions: # this operation is a bit akward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to reshaped # twice and have to be reused in the following attn_weights_reshaped = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) attn_weights = tf.reshape(attn_weights_reshaped, (bsz * self.num_heads, tgt_len, src_len)) else: attn_weights_reshaped = None attn_probs = tf.nn.dropout(attn_weights, rate=self.dropout) attn_output = tf.linalg.matmul(attn_probs, value_states) tf.debugging.assert_equal( tf.shape(attn_output), [bsz * self.num_heads, tgt_len, self.head_dim], message=f"Attention weights should be of size {[bsz * self.num_heads, tgt_len, self.head_dim]}, but is {tf.shape(attn_output)}", ) attn_output = tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)) attn_output = tf.transpose(attn_output, perm=[0, 2, 1, 3]) attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim)) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "k_proj", None) is not None: with tf.name_scope(self.k_proj.name): self.k_proj.build((self.embed_dim, self.embed_dim)) if getattr(self, "v_proj", None) is not None: with tf.name_scope(self.v_proj.name): self.v_proj.build((self.embed_dim, self.embed_dim)) if getattr(self, "q_proj", None) is not None: with tf.name_scope(self.q_proj.name): self.q_proj.build((self.embed_dim, self.embed_dim)) if getattr(self, "out_proj", None) is not None: with tf.name_scope(self.out_proj.name): self.out_proj.build((self.embed_dim, self.embed_dim)) class TFIdeficsVisionMLP(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.config = config self.activation_fn = get_tf_activation(config.hidden_act) self.fc1 = tf.keras.layers.Dense(config.intermediate_size, name="fc1") self.fc2 = tf.keras.layers.Dense(config.hidden_size, name="fc2") def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "fc1", None) is not None: with tf.name_scope(self.fc1.name): self.fc1.build(self.config.hidden_size) if getattr(self, "fc2", None) is not None: with tf.name_scope(self.fc2.name): self.fc2.build(self.config.intermediate_size) class TFIdeficsVisionEncoderLayer(tf.keras.layers.Layer): def __init__(self, config: IdeficsVisionConfig, **kwargs): super().__init__(**kwargs) self.embed_dim = config.hidden_size self.self_attn = TFIdeficsVisionAttention(config, name="self_attn") self.layer_norm1 = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm1") self.mlp = TFIdeficsVisionMLP(config, name="mlp") self.layer_norm2 = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm2") def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, causal_attention_mask: tf.Tensor, output_attentions: Optional[bool] = False, ) -> Tuple[tf.Tensor]: """ Args: hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`tf.Tensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. `(config.encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions, ) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layer_norm1", None) is not None: with tf.name_scope(self.layer_norm1.name): self.layer_norm1.build([None, None, self.embed_dim]) if getattr(self, "layer_norm2", None) is not None: with tf.name_scope(self.layer_norm2.name): self.layer_norm2.build([None, None, self.embed_dim]) class TFIdeficsVisionEncoder(tf.keras.layers.Layer): """ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a [`TFIdeficsVisionEncoderLayer`]. Args: config: IdeficsVisionConfig """ def __init__(self, config: IdeficsVisionConfig, **kwargs): super().__init__(**kwargs) self.config = config self.layers = [ TFIdeficsVisionEncoderLayer(config, name=f"layers.{i}") for i in range(config.num_hidden_layers) ] self.gradient_checkpointing = False def call( self, inputs_embeds, attention_mask: Optional[tf.Tensor] = None, causal_attention_mask: Optional[tf.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = None, ) -> Union[Tuple, TFBaseModelOutput]: r""" Args: inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) causal_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Causal mask for the text model. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None hidden_states = inputs_embeds for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if self.gradient_checkpointing and training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = tf.recompute_grad( create_custom_forward(encoder_layer), hidden_states, attention_mask, causal_attention_mask, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, causal_attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layers", None) is not None: for layer in self.layers: with tf.name_scope(layer.name): layer.build(None) class TFIdeficsVisionTransformer(TFPreTrainedModel): def __init__(self, config: IdeficsVisionConfig, **kwargs): super().__init__(config, **kwargs) self.config = config self.embed_dim = config.hidden_size self.embeddings = TFIdeficsVisionEmbeddings(config, name="embeddings") self.pre_layrnorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="pre_layrnorm") self.encoder = TFIdeficsVisionEncoder(config, name="encoder") self.post_layernorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="post_layernorm") # Adapted from transformers.models.clip.modeling_clip.CLIPVisionTransformer.forward def call( self, pixel_values: Optional[tf.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, interpolate_pos_encoding: Optional[bool] = False, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[Tuple, TFBaseModelOutputWithPooling]: r""" Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") hidden_states = self.embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding) hidden_states = self.pre_layrnorm(hidden_states) encoder_outputs = self.encoder( inputs_embeds=hidden_states, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) last_hidden_state = encoder_outputs[0] pooled_output = last_hidden_state[:, 0, :] pooled_output = self.post_layernorm(pooled_output) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embeddings", None) is not None: with tf.name_scope(self.embeddings.name): self.embeddings.build(None) if getattr(self, "pre_layrnorm", None) is not None: with tf.name_scope(self.pre_layrnorm.name): self.pre_layrnorm.build([None, None, self.embed_dim]) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "post_layernorm", None) is not None: with tf.name_scope(self.post_layernorm.name): self.post_layernorm.build([None, self.embed_dim])