# coding=utf-8 # Copyright 2024 HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch.nn import CrossEntropyLoss from transformers.models.instructblip.configuration_instructblip import ( InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from transformers.models.instructblip.modeling_instructblip import ( InstructBlipAttention, InstructBlipEncoder, InstructBlipEncoderLayer, InstructBlipForConditionalGeneration, InstructBlipForConditionalGenerationModelOutput, InstructBlipMLP, InstructBlipPreTrainedModel, InstructBlipQFormerAttention, InstructBlipQFormerEmbeddings, InstructBlipQFormerEncoder, InstructBlipQFormerIntermediate, InstructBlipQFormerLayer, InstructBlipQFormerModel, InstructBlipQFormerOutput, InstructBlipQFormerSelfOutput, InstructBlipVisionEmbeddings, InstructBlipVisionModel, ) from ...utils import logging logger = logging.get_logger(__name__) class InstructBlipVideoVisionConfig(InstructBlipVisionConfig): pass class InstructBlipVideoQFormerConfig(InstructBlipQFormerConfig): pass class InstructBlipVideoConfig(InstructBlipConfig): pass @dataclass class InstructBlipVideoForConditionalGenerationModelOutput(InstructBlipForConditionalGenerationModelOutput): pass class InstructBlipVideoVisionEmbeddings(InstructBlipVisionEmbeddings): pass class InstructBlipVideoAttention(InstructBlipAttention): pass class InstructBlipVideoMLP(InstructBlipMLP): pass class InstructBlipVideoEncoderLayer(InstructBlipEncoderLayer): pass class InstructBlipVideoPreTrainedModel(InstructBlipPreTrainedModel): pass class InstructBlipVideoEncoder(InstructBlipEncoder): pass class InstructBlipVideoVisionModel(InstructBlipVisionModel): pass class InstructBlipVideoQFormerSelfOutput(InstructBlipQFormerSelfOutput): pass class InstructBlipVideoQFormerAttention(InstructBlipQFormerAttention): pass class InstructBlipVideoQFormerIntermediate(InstructBlipQFormerIntermediate): pass class InstructBlipVideoQFormerOutput(InstructBlipQFormerOutput): pass class InstructBlipVideoQFormerLayer(InstructBlipQFormerLayer): pass class InstructBlipVideoQFormerEncoder(InstructBlipQFormerEncoder): pass class InstructBlipVideoQFormerEmbeddings(InstructBlipQFormerEmbeddings): pass class InstructBlipVideoQFormerModel(InstructBlipQFormerModel): pass class InstructBlipVideoForConditionalGeneration(InstructBlipForConditionalGeneration): def forward( self, pixel_values: torch.FloatTensor, qformer_input_ids: torch.FloatTensor, qformer_attention_mask: Optional[torch.LongTensor] = None, input_ids: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, labels: Optional[torch.LongTensor] = None, return_dict: Optional[bool] = None, interpolate_pos_encoding: bool = False, ) -> Union[Tuple, InstructBlipVideoForConditionalGenerationModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` Returns: Examples: ```python >>> from transformers import InstructBlipVideoProcessor, InstructBlipVideoForConditionalGeneration >>> import torch >>> from huggingface_hub import hf_hub_download >>> import av >>> import numpy as np >>> def read_video_pyav(container, indices): ... ''' ... Decode the video with PyAV decoder. ... Args: ... container (`av.container.input.InputContainer`): PyAV container. ... indices (`List[int]`): List of frame indices to decode. ... Returns: ... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3). ... ''' ... frames = [] ... container.seek(0) ... start_index = indices[0] ... end_index = indices[-1] ... for i, frame in enumerate(container.decode(video=0)): ... if i > end_index: ... break ... if i >= start_index and i in indices: ... frames.append(frame) ... return np.stack([x.to_ndarray(format="rgb24") for x in frames]) >>> model = InstructBlipVideoForConditionalGeneration.from_pretrained("Salesforce/instructblip-vicuna-7b", device_map="auto") >>> processor = InstructBlipVideoProcessor.from_pretrained("Salesforce/instructblip-vicuna-7b") >>> file_path = hf_hub_download( ... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset" ... ) >>> container = av.open(file_path) >>> # sample uniformly 4 frames from the videWhy is this video funny?o >>> total_frames = container.streams.video[0].frames >>> indices = np.arange(0, total_frames, total_frames / 4).astype(int) >>> clip = read_video_pyav(container, indices) >>> prompt = "What is happening in the video?" >>> inputs = processor(text=prompt, images=clip, return_tensors="pt").to(model.device) >>> outputs = model.generate( ... **inputs, ... do_sample=False, ... num_beams=5, ... max_length=256, ... repetition_penalty=1.5, ... length_penalty=1.0, ... ) >>> generated_text = processor.batch_decode(outputs, skip_special_tokens=True)[0].strip() >>> print(generated_text) "A person is eating a bowl of pasta, and they are using a fork to eat it. The person is sitting at a table, and the plate of pasta is on the table in front" ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict # step 1: forward the images through the vision encoder, # we process in a batched way, later unbatch it back (video has frames=4 always) batch_size, frames, channel, height, width = pixel_values.shape pixel_values = pixel_values.reshape(batch_size * frames, channel, height, width) vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, interpolate_pos_encoding=interpolate_pos_encoding, ) image_embeds = vision_outputs[0] # step 2: forward the query tokens through the QFormer, using the image embeddings for cross-attention image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long, device=image_embeds.device) # difference with BLIP-2 here: we also feed the instruction prompt to the Q-Former query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1) query_attention_mask = torch.ones(query_tokens.size()[:-1], dtype=torch.long, device=image_embeds.device) if qformer_attention_mask is None: qformer_attention_mask = torch.ones_like(qformer_input_ids) qformer_input_ids = qformer_input_ids.repeat_interleave(frames, dim=0) qformer_attention_mask = qformer_attention_mask.repeat_interleave(frames, dim=0) qformer_attention_mask = torch.cat([query_attention_mask, qformer_attention_mask], dim=1) query_outputs = self.qformer( input_ids=qformer_input_ids, attention_mask=qformer_attention_mask, query_embeds=query_tokens, encoder_hidden_states=image_embeds, encoder_attention_mask=image_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) query_output = query_outputs[0][:, : query_tokens.size(1), :] # step 3: use the language model, conditioned on the query outputs and the prompt language_model_inputs = self.language_projection(query_output) # unbatch inputs back, each video-frame gets `num_query_tokens` seq length language_model_inputs = language_model_inputs.reshape(batch_size, self.config.num_query_tokens * frames, -1) language_model_attention_mask = torch.ones( language_model_inputs.size()[:-1], dtype=torch.long, device=language_model_inputs.device ) inputs_embeds = self.language_model.get_input_embeddings()(input_ids) inputs_embeds = torch.cat([language_model_inputs, inputs_embeds.to(language_model_inputs.device)], dim=1) if attention_mask is None: attention_mask = torch.ones_like(input_ids) attention_mask = torch.cat([language_model_attention_mask.to(attention_mask.device), attention_mask], dim=1) if self.config.use_decoder_only_language_model: outputs = self.language_model( inputs_embeds=inputs_embeds, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) logits = outputs.logits if return_dict else outputs[0] loss = None # we compute the loss here since we need to take into account the sequence length of the query embeds if labels is not None: labels = labels.to(logits.device) logits = logits[:, -labels.size(1) :, :] # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous().to(logits.device) # Flatten the tokens loss_fct = CrossEntropyLoss(reduction="mean") loss = loss_fct(shift_logits.view(-1, self.config.text_config.vocab_size), shift_labels.view(-1)) else: outputs = self.language_model( inputs_embeds=inputs_embeds, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, ) loss = outputs.loss if return_dict else outputs[0] logits = outputs.logits if return_dict else outputs[1] if not return_dict: output = (logits, vision_outputs, query_outputs, outputs) return ((loss,) + output) if loss is not None else output return InstructBlipVideoForConditionalGenerationModelOutput( loss=loss, logits=logits, vision_outputs=vision_outputs, qformer_outputs=query_outputs, language_model_outputs=outputs, ) @torch.no_grad() def generate( self, pixel_values: torch.FloatTensor, qformer_input_ids: Optional[torch.LongTensor] = None, qformer_attention_mask: Optional[torch.LongTensor] = None, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, interpolate_pos_encoding: bool = False, **generate_kwargs, ) -> torch.LongTensor: """ Overrides `generate` function to be able to use the model as a conditional generator. Args: pixel_values (`torch.FloatTensor` of shape (batch_size, num_channels, height, width) or (batch_size, num_frames, num_channels, height, width)): Input images or videos to be processed. qformer_input_ids (`torch.LongTensor` of shape (batch_size, sequence_length), *optional*): The sequence used as a prompt to be fed to the Q-Former module. qformer_attention_mask (`torch.LongTensor` of shape (batch_size, sequence_length), *optional*): Mask to avoid performing attention on padding token indices. input_ids (`torch.LongTensor` of shape (batch_size, sequence_length), *optional*): The sequence used as a prompt for the generation. attention_mask (`torch.LongTensor` of shape (batch_size, sequence_length), *optional*): Mask to avoid performing attention on padding token indices. interpolate_pos_encoding (`bool`, *optional*, defaults to `False`): Whether to interpolate the positional encoding of the image embeddings. Returns: captions (list): A list of strings of length batch_size * num_captions. """ if hasattr(self, "hf_device_map"): # preprocess for `accelerate` self._preprocess_accelerate() # we process in a batched way, later unbatch it back (video has frames=4) batch_size, frames, channel, height, width = pixel_values.shape pixel_values = pixel_values.reshape(batch_size * frames, channel, height, width) image_embeds = self.vision_model( pixel_values, return_dict=True, interpolate_pos_encoding=interpolate_pos_encoding, ).last_hidden_state image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long, device=image_embeds.device) query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1) query_attention_mask = torch.ones(query_tokens.size()[:-1], dtype=torch.long, device=image_embeds.device) if qformer_attention_mask is None: qformer_attention_mask = torch.ones_like(qformer_input_ids) qformer_input_ids = qformer_input_ids.repeat_interleave(frames, dim=0) qformer_attention_mask = qformer_attention_mask.repeat_interleave(frames, dim=0) qformer_attention_mask = torch.cat([query_attention_mask, qformer_attention_mask], dim=1) query_outputs = self.qformer( input_ids=qformer_input_ids, attention_mask=qformer_attention_mask, query_embeds=query_tokens, encoder_hidden_states=image_embeds, encoder_attention_mask=image_attention_mask, return_dict=True, ) query_output = query_outputs.last_hidden_state[:, : query_tokens.size(1), :] language_model_inputs = self.language_projection(query_output) # unbatch the embeddings back by moving frames to seq-len language_model_inputs = language_model_inputs.reshape(batch_size, self.config.num_query_tokens * frames, -1) language_attention_mask = torch.ones( language_model_inputs.size()[:-1], dtype=torch.long, device=language_model_inputs.device ) if input_ids is None: input_ids = ( torch.LongTensor([[self.config.text_config.bos_token_id]]) .repeat(batch_size, 1) .to(image_embeds.device) ) if attention_mask is None: attention_mask = torch.ones_like(input_ids) attention_mask = torch.cat([language_attention_mask, attention_mask.to(language_attention_mask.device)], dim=1) # concatenate query embeddings with prompt embeddings inputs_embeds = self.get_input_embeddings()(input_ids) inputs_embeds = torch.cat([language_model_inputs, inputs_embeds.to(language_model_inputs.device)], dim=1) # add image_embeds length to max_length, so that the final max_length in counted only on token embeds # -1 is to account for the prepended BOS after `generate.` if not self.language_model.config.is_encoder_decoder: generate_kwargs["max_length"] = generate_kwargs.get("max_length", 20) + language_model_inputs.shape[1] - 1 generate_kwargs["min_length"] = generate_kwargs.get("min_length", 0) + language_model_inputs.shape[1] outputs = self.language_model.generate( inputs_embeds=inputs_embeds, attention_mask=attention_mask, **generate_kwargs, ) # this is a temporary workaround to be consistent with other generation models and # have BOS as the first token, even though under the hood we are calling LM with embeds if not self.language_model.config.is_encoder_decoder: # the InstructBLIP authors used inconsistent tokenizer/model files during training, # with the tokenizer's bos token being set to which has ID=2, # whereas the model's text config has bos token id = 0 bos_token_id = ( 2 if self.config.text_config.architectures[0] == "LLaMAForCausalLM" else self.config.text_config.bos_token_id ) bos_tokens = torch.LongTensor([[bos_token_id]]).repeat(batch_size, 1).to(image_embeds.device) if not isinstance(outputs, torch.Tensor): outputs.sequences = torch.cat([bos_tokens, outputs.sequences], dim=-1) else: outputs = torch.cat([bos_tokens, outputs], dim=-1) return outputs