# coding=utf-8 # Copyright 2024 Microsoft Research & University of Wisconsin-Madison and the HuggingFace Inc. team. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PaliGemmamodel configuration""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING logger = logging.get_logger(__name__) class PaliGemmaConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`PaliGemmaForConditionalGeneration`]. It is used to instantiate an PaliGemmamodel according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the PaliGemma-2B. e.g. [paligemma-hf/paligemma-2b](https://huggingface.co/paligemma-hf/paligemma-2b) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vision_config (`PaliGemmaVisionConfig`, *optional*): Custom vision config or dict text_config (`Union[AutoConfig, dict]`, *optional*): The config object of the text backbone. Can be any of `LlamaConfig` or `MistralConfig`. ignore_index (`int`, *optional*, defaults to -100): The ignore index for the loss function. image_token_index (`int`, *optional*, defaults to 256000): The image token index to encode the image prompt. vocab_size (`int`, *optional*, defaults to 257152): Vocabulary size of the PaliGemmamodel. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`~PaliGemmaForConditionalGeneration`] projection_dim (`int`, *optional*, defaults to 2048): Dimension of the multimodal projection space. hidden_size (`int`, *optional*, defaults to 2048): Dimension of the hidden layer of the Language model. Example: ```python >>> from transformers import PaliGemmaForConditionalGeneration, PaliGemmaConfig, SiglipVisionConfig, GemmaConfig >>> # Initializing a Siglip-like vision config >>> vision_config = SiglipVisionConfig() >>> # Initializing a PaliGemma config >>> text_config = GemmaConfig() >>> # Initializing a PaliGemma paligemma-3b-224 style configuration >>> configuration = PaliGemmaConfig(vision_config, text_config) >>> # Initializing a model from the paligemma-3b-224 style configuration >>> model = PaliGemmaForConditionalGeneration(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "paligemma" is_composition = False def __init__( self, vision_config=None, text_config=None, ignore_index=-100, image_token_index=256000, vocab_size=257152, projection_dim=2048, hidden_size=2048, **kwargs, ): self.ignore_index = ignore_index self.image_token_index = image_token_index self._vocab_size = vocab_size self.projection_dim = projection_dim self.hidden_size = hidden_size self.vision_config = vision_config self.is_encoder_decoder = False if isinstance(self.vision_config, dict): vision_config["model_type"] = ( vision_config["model_type"] if "model_type" in vision_config else "siglip_vision_model" ) self.vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config) elif vision_config is None: self.vision_config = CONFIG_MAPPING["siglip_vision_model"]( intermediate_size=4096, hidden_size=1152, patch_size=14, image_size=224, num_hidden_layers=27, num_attention_heads=16, vocab_size=257152, vision_use_head=False, ) self.vocab_size = self.vocab_size self.text_config = text_config if isinstance(self.text_config, dict): text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "gemma" self.text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config) self.vocab_size = self.text_config.vocab_size elif text_config is None: self.text_config = CONFIG_MAPPING["gemma"]( hidden_size=2048, num_hidden_layers=18, intermediate_size=16384, num_attention_heads=8, num_key_value_heads=1, is_encoder_decoder=False, vocab_size=vocab_size, ) self.text_config.num_image_tokens = (self.vision_config.image_size // self.vision_config.patch_size) ** 2 self.vision_config.projection_dim = projection_dim super().__init__(**kwargs) @property def vocab_size(self): warnings.warn( "The `vocab_size` attribute is deprecated and will be removed in v4.44, Please use `text_config.vocab_size` instead.", FutureWarning, ) return self._vocab_size @vocab_size.setter def vocab_size(self, value): self._vocab_size = value def to_dict(self): output = super().to_dict() output.pop("_vocab_size", None) return output