# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib from typing import TYPE_CHECKING, Any, Dict, List, Optional from packaging import version from .base import HfQuantizer if TYPE_CHECKING: from ..modeling_utils import PreTrainedModel from ..utils import is_accelerate_available, is_fbgemm_gpu_available, is_torch_available, logging from .quantizers_utils import get_module_from_name if is_torch_available(): import torch logger = logging.get_logger(__name__) class FbgemmFp8HfQuantizer(HfQuantizer): """ FP8 quantization using fbgemm kernels """ requires_parameters_quantization = True requires_calibration = False required_packages = ["fbgemm-gpu", "accelerate"] def __init__(self, quantization_config, **kwargs): super().__init__(quantization_config, **kwargs) self.quantization_config = quantization_config def validate_environment(self, *args, **kwargs): if not is_torch_available() or version.parse(importlib.metadata.version("torch")) < version.parse("2.1.0"): raise ImportError( "Using fbgemm fp8 quantization requires torch > 2.1.0" "Please install the latest version of torch ( pip install --upgrade torch )" ) if not is_fbgemm_gpu_available(): raise ImportError( "Using fbgemm fp8 quantization requires fbgemm-gpu library" "Please install the latest version of fbgemm-gpu library by following : https://pytorch.org/FBGEMM/fbgemm_gpu-development/InstallationInstructions.html#fbgemm-gpu-install-libraries" ) if not is_accelerate_available("0.32.2"): raise ImportError( "Loading an FP8 quantized model requires accelerate > 0.32.1 (`pip install --upgrade accelerate`)" ) if not torch.cuda.is_available(): raise RuntimeError("Using FP8 quantized models with fbgemm kernels requires a GPU") compute_capability = torch.cuda.get_device_capability() major, minor = compute_capability if major < 9: raise ValueError( "FP8 quantized models is only supported on GPUs with compute capability >= 9.0 (e.g H100)" ) device_map = kwargs.get("device_map", None) if device_map is None: logger.warning_once( "You have loaded an FP8 model on CPU and have a CUDA device available, make sure to set " "your model on a GPU device in order to run your model. To remove this warning, pass device_map = 'cuda'. " ) elif device_map is not None: if ( not self.pre_quantized and isinstance(device_map, dict) and ("cpu" in device_map.values() or "disk" in device_map.values()) ): raise ValueError( "You are attempting to load an FP8 model with a device_map that contains a CPU or disk device." "This is not supported when the model is quantized on the fly. " "Please use a quantized checkpoint or remove the CPU or disk device from the device_map." ) def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": if torch_dtype is None: torch_dtype = torch.bfloat16 logger.info( "Overriding torch_dtype=%s with `torch_dtype=torch.bloat16` due to " "requirements of `fbgemm-gpu` to enable model loading in fp8. " "Pass your own torch_dtype to specify the dtype of the remaining non-linear layers or pass" " torch_dtype=torch.bfloat16 to remove this warning.", torch_dtype, ) elif torch_dtype == torch.float16: raise ValueError( "You cannot use FP8 with torch_dtype=torch.float16." "We recommend you passing torch_dtype=torch.bfloat16" ) return torch_dtype def check_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, state_dict: Dict[str, Any], **kwargs, ): from ..integrations import FbgemmFp8Linear module, tensor_name = get_module_from_name(model, param_name) if isinstance(module, FbgemmFp8Linear): if self.pre_quantized or tensor_name == "bias": if tensor_name == "weight" and param_value.dtype != torch.float8_e4m3fn: raise ValueError("Expect quantized weights but got an unquantized weight") return False else: if tensor_name == "weight_scale": raise ValueError("Expect unquantized weights but got a quantized weight_scale") return True return False def create_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, target_device: "torch.device", state_dict: Dict[str, Any], unexpected_keys: Optional[List[str]] = None, ): """ Quantizes weights into weight and weight_scale """ new_value, weight_scale = torch.ops.fbgemm.quantize_fp8_per_row(param_value) module, tensor_name = get_module_from_name(model, param_name) module._buffers[tensor_name] = new_value.to(target_device) # to have the right output shape -> (out_features, 1) module._buffers["weight_scale"] = weight_scale.view(weight_scale.shape[0], 1).to(target_device) if unexpected_keys is not None and param_name in unexpected_keys: unexpected_keys.remove(param_name) del param_name def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): return model def _process_model_before_weight_loading( self, model: "PreTrainedModel", device_map, keep_in_fp32_modules: List[str] = [], **kwargs, ): from ..integrations import get_keys_to_not_convert, replace_with_fbgemm_fp8_linear self.modules_to_not_convert = get_keys_to_not_convert(model) if self.quantization_config.modules_to_not_convert is not None: self.modules_to_not_convert.extend(self.quantization_config.modules_to_not_convert) model = replace_with_fbgemm_fp8_linear( model, modules_to_not_convert=self.modules_to_not_convert, quantization_config=self.quantization_config, pre_quantized=self.pre_quantized, ) model.config.quantization_config = self.quantization_config def update_missing_keys(self, model, missing_keys: List[str], prefix: str) -> List[str]: from ..integrations import FbgemmFp8Linear not_missing_keys = [] for name, module in model.named_modules(): if isinstance(module, FbgemmFp8Linear): for missing in missing_keys: if ( (name in missing or name in f"{prefix}.{missing}") and not missing.endswith(".weight") and not missing.endswith(".bias") ): not_missing_keys.append(missing) return [k for k in missing_keys if k not in not_missing_keys] @property def is_serializable(self): return True @property def is_trainable(self) -> bool: return False