# coding=utf-8 # Copyright 2020 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team. # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import inspect import warnings from dataclasses import dataclass from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union import numpy as np import torch import torch.distributed as dist from torch import nn from torch.nn import functional as F from ..cache_utils import ( Cache, DynamicCache, EncoderDecoderCache, HQQQuantizedCache, HybridCache, MambaCache, OffloadedCache, QuantizedCacheConfig, QuantoQuantizedCache, SlidingWindowCache, StaticCache, ) from ..integrations.deepspeed import is_deepspeed_zero3_enabled from ..modeling_outputs import CausalLMOutputWithPast, Seq2SeqLMOutput from ..models.auto import ( MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING, MODEL_FOR_CAUSAL_LM_MAPPING, MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING, MODEL_FOR_VISION_2_SEQ_MAPPING, ) from ..pytorch_utils import is_torch_greater_or_equal_than_2_4 from ..tokenization_utils import ExtensionsTrie from ..utils import ( ModelOutput, is_accelerate_available, is_hqq_available, is_quanto_available, is_torchdynamo_compiling, logging, ) from .beam_constraints import DisjunctiveConstraint, PhrasalConstraint from .beam_search import BeamScorer, BeamSearchScorer, ConstrainedBeamSearchScorer from .candidate_generator import ( AssistedCandidateGenerator, CandidateGenerator, PromptLookupCandidateGenerator, _crop_past_key_values, _prepare_attention_mask, _prepare_token_type_ids, ) from .configuration_utils import GenerationConfig, GenerationMode from .logits_process import ( EncoderNoRepeatNGramLogitsProcessor, EncoderRepetitionPenaltyLogitsProcessor, EpsilonLogitsWarper, EtaLogitsWarper, ExponentialDecayLengthPenalty, ForcedBOSTokenLogitsProcessor, ForcedEOSTokenLogitsProcessor, ForceTokensLogitsProcessor, HammingDiversityLogitsProcessor, InfNanRemoveLogitsProcessor, LogitNormalization, LogitsProcessorList, MinLengthLogitsProcessor, MinNewTokensLengthLogitsProcessor, MinPLogitsWarper, NoBadWordsLogitsProcessor, NoRepeatNGramLogitsProcessor, PrefixConstrainedLogitsProcessor, RepetitionPenaltyLogitsProcessor, SequenceBiasLogitsProcessor, SuppressTokensAtBeginLogitsProcessor, SuppressTokensLogitsProcessor, TemperatureLogitsWarper, TopKLogitsWarper, TopPLogitsWarper, TypicalLogitsWarper, UnbatchedClassifierFreeGuidanceLogitsProcessor, WatermarkLogitsProcessor, ) from .stopping_criteria import ( EosTokenCriteria, MaxLengthCriteria, MaxTimeCriteria, StoppingCriteria, StoppingCriteriaList, StopStringCriteria, ) if TYPE_CHECKING: from ..modeling_utils import PreTrainedModel from ..tokenization_utils_base import PreTrainedTokenizerBase from .streamers import BaseStreamer logger = logging.get_logger(__name__) if is_accelerate_available(): from accelerate.hooks import AlignDevicesHook, add_hook_to_module NEED_SETUP_CACHE_CLASSES_MAPPING = { "static": StaticCache, "sliding_window": SlidingWindowCache, "hybrid": HybridCache, "mamba": MambaCache, } QUANT_BACKEND_CLASSES_MAPPING = {"quanto": QuantoQuantizedCache, "HQQ": HQQQuantizedCache} @dataclass class GenerateDecoderOnlyOutput(ModelOutput): """ Outputs of decoder-only generation models, when using non-beam methods. Args: sequences (`torch.LongTensor` of shape `(batch_size, sequence_length)`): The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early due to the `eos_token_id`. scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax) at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token), with each tensor of shape `(batch_size, config.vocab_size)`. logits (`tuple(torch.FloatTensor)` *optional*, returned when `output_logits=True` is passed or when `config.output_logits=True`): Unprocessed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax) at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token), with each tensor of shape `(batch_size, config.vocab_size)`. attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`. hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `torch.FloatTensor` of shape `(batch_size, generated_length, hidden_size)`. past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): NOTE: some models have a different `past_key_values` format, confirm with the model's documentation. Usually a Tuple (one element for each layer of the decoder) of tuples (two elements, key tensor and value tensor). The first Tuple is of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. """ sequences: torch.LongTensor = None scores: Optional[Tuple[torch.FloatTensor]] = None logits: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None @dataclass class GenerateEncoderDecoderOutput(ModelOutput): """ Outputs of encoder-decoder generation models, when using non-beam methods. Args: sequences (`torch.LongTensor` of shape `(batch_size*num_return_sequences, sequence_length)`): The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early due to the `eos_token_id`. scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax) at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token), with each tensor of shape `(batch_size, config.vocab_size)`. logits (`tuple(torch.FloatTensor)` *optional*, returned when `output_logits=True` is passed or when `config.output_logits=True`): Unprocessed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax) at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token), with each tensor of shape `(batch_size, config.vocab_size)`. encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer of the decoder) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. decoder_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`. cross_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`. decoder_hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `torch.FloatTensor` of shape `(batch_size, generated_length, hidden_size)`. past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): NOTE: some models have a different `past_key_values` format, confirm with the model's documentation. Usually a Tuple (one element for each layer of the decoder) of tuples (two elements, key tensor and value tensor). The first Tuple is of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. """ sequences: torch.LongTensor = None scores: Optional[Tuple[torch.FloatTensor]] = None logits: Optional[Tuple[torch.FloatTensor]] = None encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None cross_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None decoder_hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None @dataclass class GenerateBeamDecoderOnlyOutput(ModelOutput): """ Outputs of decoder-only generation models, when using beam methods. Args: sequences (`torch.LongTensor` of shape `(batch_size*num_return_sequences, sequence_length)`): The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early due to the `eos_token_id`. sequences_scores (`torch.FloatTensor` of shape `(batch_size*num_return_sequences)`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): Final beam scores of the generated `sequences`. scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): Beam transition scores for each vocabulary token at each generation step. Beam transition scores consisting of log probabilities of tokens conditioned on log softmax of previously generated tokens in this beam. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token), with each tensor of shape `(batch_size*num_beams, config.vocab_size)`. logits (`tuple(torch.FloatTensor)` *optional*, returned when `output_logits=True` is passed or when `config.output_logits=True`): Unprocessed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax) at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token), with each tensor of shape `(batch_size, config.vocab_size)`. beam_indices (`torch.LongTensor`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): Beam indices of generated token id at each generation step. `torch.LongTensor` of shape `(batch_size*num_return_sequences, sequence_length)`. attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `torch.FloatTensor` of shape `(batch_size*num_beams, num_heads, generated_length, sequence_length)`. hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `torch.FloatTensor` of shape `(batch_size*num_beams*num_return_sequences, generated_length, hidden_size)`. past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): NOTE: some models have a different `past_key_values` format, confirm with the model's documentation. Usually a Tuple (one element for each layer of the decoder) of tuples (two elements, key tensor and value tensor). The first Tuple is of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. """ sequences: torch.LongTensor = None sequences_scores: Optional[torch.FloatTensor] = None scores: Optional[Tuple[torch.FloatTensor]] = None logits: Optional[Tuple[torch.FloatTensor]] = None beam_indices: Optional[torch.LongTensor] = None attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None @dataclass class GenerateBeamEncoderDecoderOutput(ModelOutput): """ Outputs of encoder-decoder generation models, when using beam methods. Args: sequences (`torch.LongTensor` of shape `(batch_size*num_return_sequences, sequence_length)`): The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early due to the `eos_token_id`. sequences_scores (`torch.FloatTensor` of shape `(batch_size*num_return_sequences)`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): Final beam scores of the generated `sequences`. scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): Beam transition scores for each vocabulary token at each generation step. Beam transition scores consisting of log probabilities of tokens conditioned on log softmax of previously generated tokens in this beam. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token), with each tensor of shape `(batch_size*num_beams, config.vocab_size)`. logits (`tuple(torch.FloatTensor)` *optional*, returned when `output_logits=True` is passed or when `config.output_logits=True`): Unprocessed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax) at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token), with each tensor of shape `(batch_size, config.vocab_size)`. beam_indices (`torch.LongTensor`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): Beam indices of generated token id at each generation step. `torch.LongTensor` of shape `(batch_size*num_return_sequences, sequence_length)`. encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer of the decoder) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size*num_beams*num_return_sequences, sequence_length, hidden_size)`. decoder_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `torch.FloatTensor` of shape `(batch_size*num_beams*num_return_sequences, num_heads, generated_length, sequence_length)`. cross_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`. decoder_hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of `torch.FloatTensor` of shape `(batch_size*num_beams*num_return_sequences, generated_length, hidden_size)`. past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): NOTE: some models have a different `past_key_values` format, confirm with the model's documentation. Usually a Tuple (one element for each layer of the decoder) of tuples (two elements, key tensor and value tensor). The first Tuple is of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. """ sequences: torch.LongTensor = None sequences_scores: Optional[torch.FloatTensor] = None scores: Optional[Tuple[torch.FloatTensor]] = None logits: Optional[Tuple[torch.FloatTensor]] = None beam_indices: Optional[torch.LongTensor] = None encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None cross_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None decoder_hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None # Equivalent classes (kept for retrocompatibility purposes) GreedySearchDecoderOnlyOutput = GenerateDecoderOnlyOutput ContrastiveSearchDecoderOnlyOutput = GenerateDecoderOnlyOutput SampleDecoderOnlyOutput = GenerateDecoderOnlyOutput ContrastiveSearchEncoderDecoderOutput = GenerateEncoderDecoderOutput GreedySearchEncoderDecoderOutput = GenerateEncoderDecoderOutput SampleEncoderDecoderOutput = GenerateEncoderDecoderOutput BeamSearchDecoderOnlyOutput = GenerateBeamDecoderOnlyOutput BeamSampleDecoderOnlyOutput = GenerateBeamDecoderOnlyOutput BeamSearchEncoderDecoderOutput = GenerateBeamEncoderDecoderOutput BeamSampleEncoderDecoderOutput = GenerateBeamEncoderDecoderOutput GreedySearchOutput = Union[GreedySearchEncoderDecoderOutput, GreedySearchDecoderOnlyOutput] SampleOutput = Union[SampleEncoderDecoderOutput, SampleDecoderOnlyOutput] BeamSearchOutput = Union[BeamSearchEncoderDecoderOutput, BeamSearchDecoderOnlyOutput] BeamSampleOutput = Union[BeamSampleEncoderDecoderOutput, BeamSampleDecoderOnlyOutput] ContrastiveSearchOutput = Union[ContrastiveSearchEncoderDecoderOutput, ContrastiveSearchDecoderOnlyOutput] # Typing shortcuts GenerateNonBeamOutput = Union[GenerateDecoderOnlyOutput, GenerateEncoderDecoderOutput] GenerateBeamOutput = Union[GenerateBeamDecoderOnlyOutput, GenerateBeamEncoderDecoderOutput] GenerateOutput = Union[GenerateNonBeamOutput, GenerateBeamOutput] class GenerationMixin: """ A class containing all functions for auto-regressive text generation, to be used as a mixin in [`PreTrainedModel`]. The class exposes [`~generation.GenerationMixin.generate`], which can be used for: - *greedy decoding* if `num_beams=1` and `do_sample=False` - *contrastive search* if `penalty_alpha>0` and `top_k>1` - *multinomial sampling* if `num_beams=1` and `do_sample=True` - *beam-search decoding* if `num_beams>1` and `do_sample=False` - *beam-search multinomial sampling* if `num_beams>1` and `do_sample=True` - *diverse beam-search decoding* if `num_beams>1` and `num_beam_groups>1` - *constrained beam-search decoding* if `constraints!=None` or `force_words_ids!=None` - *assisted decoding* if `assistant_model` or `prompt_lookup_num_tokens` is passed to `.generate()` To learn more about decoding strategies refer to the [text generation strategies guide](../generation_strategies). """ def prepare_inputs_for_generation(self, *args, **kwargs): raise NotImplementedError( "A model class needs to define a `prepare_inputs_for_generation` method in order to use `.generate()`." ) def _prepare_model_inputs( self, inputs: Optional[torch.Tensor] = None, bos_token_id: Optional[torch.Tensor] = None, model_kwargs: Optional[Dict[str, torch.Tensor]] = None, ) -> Tuple[torch.Tensor, Optional[str], Dict[str, torch.Tensor]]: """ This function extracts the model-specific `inputs` for generation. """ # 1. retrieve all kwargs that are non-None or non-model input related. # some encoder-decoder models have different names for model and encoder if ( self.config.is_encoder_decoder and hasattr(self, "encoder") and self.encoder.main_input_name != self.main_input_name ): input_name = self.encoder.main_input_name else: input_name = self.main_input_name model_kwargs = {k: v for k, v in model_kwargs.items() if v is not None or k != input_name} # 2. check whether model_input_name is passed as kwarg # if yes and `inputs` is None use kwarg inputs inputs_kwarg = model_kwargs.pop(input_name, None) if inputs_kwarg is not None and inputs is not None: raise ValueError( f"`inputs`: {inputs}` were passed alongside {input_name} which is not allowed. " f"Make sure to either pass {inputs} or {input_name}=..." ) elif inputs_kwarg is not None: inputs = inputs_kwarg # 3. In the presence of `inputs_embeds` for text models: # - decoder-only models should complain if the user attempts to pass `inputs_embeds`, but the model # doesn't have its forwarding implemented. `inputs_embeds` is kept in `model_kwargs` and can coexist with # input_ids (`inputs_embeds` will be used in the 1st generation step, as opposed to `input_ids`) # - encoder-decoder models should complain if the user attempts to pass `inputs_embeds` and `input_ids`, and # pull the former to inputs. It will be used in place of `input_ids` to get the encoder hidden states. if input_name == "input_ids" and "inputs_embeds" in model_kwargs: if not self.config.is_encoder_decoder: has_inputs_embeds_forwarding = "inputs_embeds" in set( inspect.signature(self.prepare_inputs_for_generation).parameters.keys() ) if not has_inputs_embeds_forwarding: raise ValueError( f"You passed `inputs_embeds` to `.generate()`, but the model class {self.__class__.__name__} " "doesn't have its forwarding implemented. See the GPT2 implementation for an example " "(https://github.com/huggingface/transformers/pull/21405), and feel free to open a PR with it!" ) # In this case, `input_ids` is moved to the `model_kwargs`, so a few automations (like the creation of # the attention mask) can rely on the actual model input. model_kwargs["input_ids"] = self._maybe_initialize_input_ids_for_generation( inputs, bos_token_id, model_kwargs=model_kwargs ) else: if inputs is not None: raise ValueError("You passed `inputs_embeds` and `input_ids` to `.generate()`. Please pick one.") inputs, input_name = model_kwargs["inputs_embeds"], "inputs_embeds" # 4. if `inputs` is still None, try to create `input_ids` from BOS token inputs = self._maybe_initialize_input_ids_for_generation(inputs, bos_token_id, model_kwargs) return inputs, input_name, model_kwargs def _maybe_initialize_input_ids_for_generation( self, inputs: Optional[torch.Tensor] = None, bos_token_id: Optional[torch.Tensor] = None, model_kwargs: Optional[Dict[str, torch.Tensor]] = None, ) -> torch.LongTensor: """Initializes input ids for generation, if necessary.""" if inputs is not None: return inputs encoder_outputs = model_kwargs.get("encoder_outputs") if self.config.is_encoder_decoder and encoder_outputs is not None: # make dummy input_ids with value -100, as a sanity check ensuring that they won't be used for encoding shape = encoder_outputs.last_hidden_state.size()[:-1] return torch.ones(shape, dtype=torch.long, device=self.device) * -100 # If there is some tensor in `model_kwargs`, we can infer the batch size from it. This is helpful with # soft-prompting or in multimodal implementations built on top of decoder-only language models. batch_size = 1 for value in model_kwargs.values(): if isinstance(value, torch.Tensor): batch_size = value.shape[0] break if "inputs_embeds" in model_kwargs: return torch.ones((batch_size, 0), dtype=torch.long, device=self.device) if bos_token_id is None: raise ValueError("`bos_token_id` has to be defined when no `input_ids` are provided.") return torch.ones((batch_size, 1), dtype=torch.long, device=self.device) * bos_token_id def _prepare_attention_mask_for_generation( self, inputs: torch.Tensor, pad_token_id: Optional[torch.Tensor], eos_token_id: Optional[torch.Tensor], ) -> torch.LongTensor: # No information for attention mask inference -> return default attention mask default_attention_mask = torch.ones(inputs.shape[:2], dtype=torch.long, device=inputs.device) if pad_token_id is None: return default_attention_mask is_input_ids = len(inputs.shape) == 2 and inputs.dtype in [torch.int, torch.long] if not is_input_ids: return default_attention_mask # Otherwise we have may have information -> try to infer the attention mask if inputs.device.type == "mps" and not is_torch_greater_or_equal_than_2_4: # mps does not support torch.isin for torch<2.4 (https://github.com/pytorch/pytorch/issues/77764) raise ValueError( "Can't infer missing attention mask on `mps` device for torch<2.4. Please provide an `attention_mask` or upgrade to torch>=2.4" ) is_pad_token_in_inputs = (pad_token_id is not None) and ( torch.isin(elements=inputs, test_elements=pad_token_id).any() ) is_pad_token_not_equal_to_eos_token_id = (eos_token_id is None) or ~( torch.isin(elements=eos_token_id, test_elements=pad_token_id).any() ) can_infer_attention_mask = is_pad_token_in_inputs * is_pad_token_not_equal_to_eos_token_id attention_mask_from_padding = inputs.ne(pad_token_id).long() attention_mask = ( attention_mask_from_padding * can_infer_attention_mask + default_attention_mask * ~can_infer_attention_mask ) return attention_mask def _prepare_encoder_decoder_kwargs_for_generation( self, inputs_tensor: torch.Tensor, model_kwargs, model_input_name: Optional[str], generation_config: GenerationConfig, ) -> Dict[str, Any]: # 1. get encoder encoder = self.get_encoder() # Compatibility with Accelerate big model inference: we need the encoder to outputs stuff on the same device # as the inputs. if hasattr(self, "hf_device_map"): if hasattr(encoder, "_hf_hook"): encoder._hf_hook.io_same_device = True else: add_hook_to_module(encoder, AlignDevicesHook(io_same_device=True)) # 2. Prepare encoder args and encoder kwargs from model kwargs and generation config. irrelevant_prefix = ["decoder_", "cross_attn", "use_cache"] encoder_kwargs = { argument: value for argument, value in model_kwargs.items() if not any(argument.startswith(p) for p in irrelevant_prefix) } encoder_signature = set(inspect.signature(encoder.forward).parameters) encoder_accepts_wildcard = "kwargs" in encoder_signature or "model_kwargs" in encoder_signature if not encoder_accepts_wildcard: encoder_kwargs = { argument: value for argument, value in encoder_kwargs.items() if argument in encoder_signature } encoder_kwargs["output_attentions"] = generation_config.output_attentions encoder_kwargs["output_hidden_states"] = generation_config.output_hidden_states # 3. make sure that encoder returns `ModelOutput` model_input_name = model_input_name if model_input_name is not None else self.main_input_name encoder_kwargs["return_dict"] = True encoder_kwargs[model_input_name] = inputs_tensor model_kwargs["encoder_outputs"]: ModelOutput = encoder(**encoder_kwargs) return model_kwargs def _prepare_decoder_input_ids_for_generation( self, batch_size: int, model_input_name: str, model_kwargs: Dict[str, torch.Tensor], decoder_start_token_id: torch.Tensor, device: torch.device = None, ) -> Tuple[torch.LongTensor, Dict[str, torch.Tensor]]: """Prepares `decoder_input_ids` for generation with encoder-decoder models""" # 1. Check whether the user has defined `decoder_input_ids` manually. To facilitate in terms of input naming, # we also allow the user to pass it under `input_ids`, if the encoder does not use it as the main input. if model_kwargs is not None and "decoder_input_ids" in model_kwargs: decoder_input_ids = model_kwargs.pop("decoder_input_ids") elif "input_ids" in model_kwargs and model_input_name != "input_ids": decoder_input_ids = model_kwargs.pop("input_ids") else: decoder_input_ids = None # 2. `decoder_start_token_id` must have shape (batch_size, 1) if device is None: device = self.device if decoder_start_token_id.ndim == 1: if decoder_start_token_id.shape[0] != batch_size: raise ValueError( f"`decoder_start_token_id` expected to have length {batch_size} but got {decoder_start_token_id.shape[0]}" ) decoder_start_token_id = decoder_start_token_id.view(-1, 1) else: decoder_start_token_id = ( torch.ones((batch_size, 1), dtype=torch.long, device=device) * decoder_start_token_id ) # 3. Encoder-decoder models expect the `decoder_input_ids` to start with a special token. Let's ensure that. # no user input -> use decoder_start_token_id as decoder_input_ids if decoder_input_ids is None: decoder_input_ids = decoder_start_token_id # exception: Donut checkpoints have task-specific decoder starts and don't expect a BOS token. Note that the # original checkpoints can't be detected through `self.__class__.__name__.lower()`, needing custom logic. # See: https://github.com/huggingface/transformers/pull/31470 elif "donut" in self.__class__.__name__.lower() or ( self.config.model_type == "vision-encoder-decoder" and "donut" in self.config.encoder.model_type.lower() ): pass elif self.config.model_type in ["whisper"]: pass # user input but doesn't start with decoder_start_token_id -> prepend decoder_start_token_id (and adjust # decoder_attention_mask if provided) elif (decoder_input_ids[:, 0] != decoder_start_token_id[:, 0]).all().item(): decoder_input_ids = torch.cat([decoder_start_token_id, decoder_input_ids], dim=-1) if "decoder_attention_mask" in model_kwargs: decoder_attention_mask = model_kwargs["decoder_attention_mask"] decoder_attention_mask = torch.cat( (torch.ones_like(decoder_attention_mask)[:, :1], decoder_attention_mask), dim=-1, ) model_kwargs["decoder_attention_mask"] = decoder_attention_mask return decoder_input_ids, model_kwargs @staticmethod def _expand_inputs_for_generation( expand_size: int = 1, is_encoder_decoder: bool = False, input_ids: Optional[torch.LongTensor] = None, **model_kwargs, ) -> Tuple[torch.LongTensor, Dict[str, Any]]: """Expands tensors from [batch_size, ...] to [batch_size * expand_size, ...]""" def _expand_dict_for_generation(dict_to_expand): for key in dict_to_expand: if ( key != "cache_position" and dict_to_expand[key] is not None and isinstance(dict_to_expand[key], torch.Tensor) ): dict_to_expand[key] = dict_to_expand[key].repeat_interleave(expand_size, dim=0) return dict_to_expand if input_ids is not None: input_ids = input_ids.repeat_interleave(expand_size, dim=0) model_kwargs = _expand_dict_for_generation(model_kwargs) if is_encoder_decoder: if model_kwargs.get("encoder_outputs") is None: raise ValueError("If `is_encoder_decoder` is True, make sure that `encoder_outputs` is defined.") model_kwargs["encoder_outputs"] = _expand_dict_for_generation(model_kwargs["encoder_outputs"]) return input_ids, model_kwargs def _extract_past_from_model_output(self, outputs: ModelOutput): past_key_values = None cache_name = "past_key_values" if "past_key_values" in outputs: past_key_values = outputs.past_key_values elif "mems" in outputs: past_key_values = outputs.mems elif "past_buckets_states" in outputs: past_key_values = outputs.past_buckets_states elif "cache_params" in outputs: past_key_values = outputs.cache_params cache_name = "cache_params" return cache_name, past_key_values def _update_model_kwargs_for_generation( self, outputs: ModelOutput, model_kwargs: Dict[str, Any], is_encoder_decoder: bool = False, num_new_tokens: int = 1, ) -> Dict[str, Any]: # update past_key_values keeping its naming used in model code cache_name, cache = self._extract_past_from_model_output(outputs) model_kwargs[cache_name] = cache if getattr(outputs, "state", None) is not None: model_kwargs["state"] = outputs.state # update token_type_ids with last value if "token_type_ids" in model_kwargs: token_type_ids = model_kwargs["token_type_ids"] model_kwargs["token_type_ids"] = torch.cat([token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], dim=-1) if not is_encoder_decoder: # update attention mask if "attention_mask" in model_kwargs: attention_mask = model_kwargs["attention_mask"] model_kwargs["attention_mask"] = torch.cat( [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1 ) else: # update decoder attention mask if "decoder_attention_mask" in model_kwargs: decoder_attention_mask = model_kwargs["decoder_attention_mask"] model_kwargs["decoder_attention_mask"] = torch.cat( [decoder_attention_mask, decoder_attention_mask.new_ones((decoder_attention_mask.shape[0], 1))], dim=-1, ) if model_kwargs.get("use_cache", True): model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + num_new_tokens else: past_positions = model_kwargs.pop("cache_position") new_positions = torch.arange( past_positions[-1] + 1, past_positions[-1] + num_new_tokens + 1, dtype=past_positions.dtype ).to(past_positions.device) model_kwargs["cache_position"] = torch.cat((past_positions, new_positions)) return model_kwargs def _reorder_cache(self, past_key_values, beam_idx): raise NotImplementedError( f"Make sure that a `_reorder_cache` function is correctly implemented in {self.__class__.__module__} to" f" enable beam search for {self.__class__}" ) def _get_candidate_generator( self, generation_config: GenerationConfig, input_ids: torch.LongTensor, inputs_tensor: torch.Tensor, assistant_model: "PreTrainedModel", logits_processor: LogitsProcessorList, model_kwargs: Dict, ) -> CandidateGenerator: """ Returns the candidate generator to be used in `assisted_generation` """ if generation_config.prompt_lookup_num_tokens is not None: candidate_generator = PromptLookupCandidateGenerator( eos_token_id=generation_config._eos_token_tensor, num_output_tokens=generation_config.prompt_lookup_num_tokens, max_matching_ngram_size=generation_config.max_matching_ngram_size, max_length=generation_config.max_length, ) else: candidate_generator = AssistedCandidateGenerator( input_ids=input_ids, assistant_model=assistant_model, generation_config=generation_config, model_kwargs=model_kwargs, inputs_tensor=inputs_tensor, logits_processor=logits_processor, ) return candidate_generator def _get_logits_warper( self, generation_config: GenerationConfig, device: str, ) -> LogitsProcessorList: """ This class returns a [`LogitsProcessorList`] list object that contains all relevant [`LogitsWarper`] instances used for multinomial sampling. """ # instantiate warpers list warpers = LogitsProcessorList() # In beam methods, we need to keep at least one non-eos token to explore continuations that might have a # better score (i.e. keep len(list(generation_config._eos_token_tensor)) + 1) if generation_config.num_beams > 1: if isinstance(generation_config._eos_token_tensor, list): min_tokens_to_keep = len(generation_config._eos_token_tensor) + 1 elif isinstance(generation_config._eos_token_tensor, torch.Tensor): min_tokens_to_keep = generation_config._eos_token_tensor.shape[0] + 1 else: min_tokens_to_keep = 2 else: min_tokens_to_keep = 1 # the following idea is largely copied from this PR: https://github.com/huggingface/transformers/pull/5420/files # all samplers can be found in `generation_utils_samplers.py` if generation_config.temperature is not None and generation_config.temperature != 1.0: warpers.append(TemperatureLogitsWarper(generation_config.temperature)) if generation_config.top_k is not None and generation_config.top_k != 0: warpers.append(TopKLogitsWarper(top_k=generation_config.top_k, min_tokens_to_keep=min_tokens_to_keep)) if generation_config.top_p is not None and generation_config.top_p < 1.0: warpers.append(TopPLogitsWarper(top_p=generation_config.top_p, min_tokens_to_keep=min_tokens_to_keep)) if generation_config.min_p is not None: # Applied after temperature scaling (see https://github.com/ggerganov/llama.cpp/pull/3841#issuecomment-2073826084) warpers.append(MinPLogitsWarper(min_p=generation_config.min_p, min_tokens_to_keep=min_tokens_to_keep)) if generation_config.typical_p is not None and generation_config.typical_p < 1.0: warpers.append( TypicalLogitsWarper(mass=generation_config.typical_p, min_tokens_to_keep=min_tokens_to_keep) ) if generation_config.epsilon_cutoff is not None and 0.0 < generation_config.epsilon_cutoff < 1.0: warpers.append( EpsilonLogitsWarper(epsilon=generation_config.epsilon_cutoff, min_tokens_to_keep=min_tokens_to_keep) ) if generation_config.eta_cutoff is not None and 0.0 < generation_config.eta_cutoff < 1.0: warpers.append( EtaLogitsWarper( epsilon=generation_config.eta_cutoff, min_tokens_to_keep=min_tokens_to_keep, device=device ) ) # `LogitNormalization` should always be the last logit processor, when present if generation_config.renormalize_logits is True: warpers.append(LogitNormalization()) return warpers def _get_logits_processor( self, generation_config: GenerationConfig, input_ids_seq_length: int, encoder_input_ids: torch.LongTensor, prefix_allowed_tokens_fn: Callable[[int, torch.Tensor], List[int]], logits_processor: Optional[LogitsProcessorList], device: str = None, model_kwargs: Optional[Dict[str, Any]] = None, negative_prompt_ids: Optional[torch.Tensor] = None, negative_prompt_attention_mask: Optional[torch.Tensor] = None, ) -> LogitsProcessorList: """ This class returns a [`LogitsProcessorList`] list object that contains all relevant [`LogitsProcessor`] instances used to modify the scores of the language model head. """ # instantiate processors list processors = LogitsProcessorList() if generation_config.guidance_scale is not None and generation_config.guidance_scale != 1: processors.append( UnbatchedClassifierFreeGuidanceLogitsProcessor( generation_config.guidance_scale, self, unconditional_ids=negative_prompt_ids, unconditional_attention_mask=negative_prompt_attention_mask, use_cache=model_kwargs["use_cache"], ) ) if generation_config.sequence_bias is not None: processors.append(SequenceBiasLogitsProcessor(sequence_bias=generation_config.sequence_bias)) if generation_config.diversity_penalty is not None and generation_config.diversity_penalty > 0.0: processors.append( HammingDiversityLogitsProcessor( diversity_penalty=generation_config.diversity_penalty, num_beams=generation_config.num_beams, num_beam_groups=generation_config.num_beam_groups, ) ) if ( generation_config.encoder_repetition_penalty is not None and generation_config.encoder_repetition_penalty != 1.0 ): processors.append( EncoderRepetitionPenaltyLogitsProcessor( penalty=generation_config.encoder_repetition_penalty, encoder_input_ids=encoder_input_ids, ) ) if generation_config.repetition_penalty is not None and generation_config.repetition_penalty != 1.0: processors.append(RepetitionPenaltyLogitsProcessor(penalty=generation_config.repetition_penalty)) if generation_config.no_repeat_ngram_size is not None and generation_config.no_repeat_ngram_size > 0: processors.append(NoRepeatNGramLogitsProcessor(generation_config.no_repeat_ngram_size)) if ( generation_config.encoder_no_repeat_ngram_size is not None and generation_config.encoder_no_repeat_ngram_size > 0 ): processors.append( EncoderNoRepeatNGramLogitsProcessor( generation_config.encoder_no_repeat_ngram_size, encoder_input_ids, ) ) if generation_config.bad_words_ids is not None: processors.append( NoBadWordsLogitsProcessor( generation_config.bad_words_ids, generation_config._eos_token_tensor, ) ) if ( generation_config.min_length is not None and generation_config._eos_token_tensor is not None and generation_config.min_length > 0 ): processors.append( MinLengthLogitsProcessor( generation_config.min_length, generation_config._eos_token_tensor, device=device, ) ) if ( generation_config.min_new_tokens is not None and generation_config._eos_token_tensor is not None and generation_config.min_new_tokens > 0 ): processors.append( MinNewTokensLengthLogitsProcessor( input_ids_seq_length, generation_config.min_new_tokens, generation_config._eos_token_tensor, device=device, ) ) if prefix_allowed_tokens_fn is not None: processors.append( PrefixConstrainedLogitsProcessor( prefix_allowed_tokens_fn, generation_config.num_beams // generation_config.num_beam_groups, ) ) if generation_config.forced_bos_token_id is not None: processors.append( ForcedBOSTokenLogitsProcessor( generation_config.forced_bos_token_id, ) ) if generation_config.forced_eos_token_id is not None: processors.append( ForcedEOSTokenLogitsProcessor( generation_config.max_length, generation_config.forced_eos_token_id, device=device, ) ) if generation_config.remove_invalid_values is True: processors.append(InfNanRemoveLogitsProcessor()) if generation_config.exponential_decay_length_penalty is not None: processors.append( ExponentialDecayLengthPenalty( generation_config.exponential_decay_length_penalty, generation_config._eos_token_tensor, input_ids_seq_length, ) ) if generation_config.suppress_tokens is not None: processors.append( SuppressTokensLogitsProcessor( generation_config.suppress_tokens, device=device, ) ) if generation_config.begin_suppress_tokens is not None: begin_index = input_ids_seq_length begin_index = ( begin_index if (input_ids_seq_length > 1 or generation_config.forced_bos_token_id is None) else begin_index + 1 ) if generation_config.forced_decoder_ids is not None: # generation starts after the last token that is forced begin_index += generation_config.forced_decoder_ids[-1][0] processors.append( SuppressTokensAtBeginLogitsProcessor( generation_config.begin_suppress_tokens, begin_index, device=device, ) ) if generation_config.forced_decoder_ids is not None: # TODO(Sanchit): deprecate in v4.40 by removing this logic warnings.warn( "You have explicitly specified `forced_decoder_ids`. This functionality has been deprecated and will throw an error in v4.40. Please remove the `forced_decoder_ids` argument in favour of `input_ids` or `decoder_input_ids` respectively.", FutureWarning, ) processors.append(ForceTokensLogitsProcessor(generation_config.forced_decoder_ids, _has_warned=True)) if generation_config.watermarking_config is not None: processors.append( WatermarkLogitsProcessor( vocab_size=self.config.vocab_size, device=device, greenlist_ratio=generation_config.watermarking_config.greenlist_ratio, bias=generation_config.watermarking_config.bias, hashing_key=generation_config.watermarking_config.hashing_key, seeding_scheme=generation_config.watermarking_config.seeding_scheme, context_width=generation_config.watermarking_config.context_width, ) ) processors = self._merge_criteria_processor_list(processors, logits_processor) # `LogitNormalization` should always be the last logit processor, when present if generation_config.renormalize_logits is True: processors.append(LogitNormalization()) return processors def _get_stopping_criteria( self, generation_config: GenerationConfig, stopping_criteria: Optional[StoppingCriteriaList], tokenizer: Optional["PreTrainedTokenizerBase"] = None, **kwargs, ) -> StoppingCriteriaList: criteria = StoppingCriteriaList() if generation_config.max_length is not None: max_position_embeddings = getattr(self.config, "max_position_embeddings", None) criteria.append( MaxLengthCriteria( max_length=generation_config.max_length, max_position_embeddings=max_position_embeddings, ) ) if generation_config.max_time is not None: criteria.append(MaxTimeCriteria(max_time=generation_config.max_time)) if generation_config.stop_strings is not None: if tokenizer is None: raise ValueError( "There are one or more stop strings, either in the arguments to `generate` or in the " "model's generation config, but we could not locate a tokenizer. When generating with " "stop strings, you must pass the model's tokenizer to the `tokenizer` argument of `generate`." ) criteria.append(StopStringCriteria(stop_strings=generation_config.stop_strings, tokenizer=tokenizer)) if generation_config._eos_token_tensor is not None: criteria.append(EosTokenCriteria(eos_token_id=generation_config._eos_token_tensor)) criteria = self._merge_criteria_processor_list(criteria, stopping_criteria) return criteria def _merge_criteria_processor_list( self, default_list: Union[LogitsProcessorList, StoppingCriteriaList], custom_list: Union[LogitsProcessorList, StoppingCriteriaList], ) -> Union[LogitsProcessorList, StoppingCriteriaList]: if len(custom_list) == 0: return default_list for default in default_list: for custom in custom_list: if type(custom) is type(default): object_type = "stopping criteria" if isinstance(custom, StoppingCriteria) else "logits processor" raise ValueError( f"A custom {object_type} of type {type(custom)} with values {custom} has been passed to" f" `.generate()`, but it has already been created with the values {default}. {default} has been" " created by passing the corresponding arguments to generate or by the model's config default" f" values. If you just want to change the default values of {object_type} consider passing" f" them as arguments to `.generate()` instead of using a custom {object_type}." ) default_list.extend(custom_list) return default_list def compute_transition_scores( self, sequences: torch.Tensor, scores: Tuple[torch.Tensor], beam_indices: Optional[torch.Tensor] = None, normalize_logits: bool = False, ) -> torch.Tensor: """ Computes the transition scores of sequences given the generation scores (and beam indices, if beam search was used). This is a convenient method to quicky obtain the scores of the selected tokens at generation time. Parameters: sequences (`torch.LongTensor`): The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early due to the `eos_token_id`. scores (`tuple(torch.FloatTensor)`): Transition scores for each vocabulary token at each generation step. Beam transition scores consisting of log probabilities of tokens conditioned on log softmax of previously generated tokens in this beam. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token), with each tensor of shape `(batch_size*num_beams, config.vocab_size)`. beam_indices (`torch.LongTensor`, *optional*): Beam indices of generated token id at each generation step. `torch.LongTensor` of shape `(batch_size*num_return_sequences, sequence_length)`. Only required if a `num_beams>1` at generate-time. normalize_logits (`bool`, *optional*, defaults to `False`): Whether to normalize the logits (which, for legacy reasons, may be unnormalized). Return: `torch.Tensor`: A `torch.Tensor` of shape `(batch_size*num_return_sequences, sequence_length)` containing the transition scores (logits) Examples: ```python >>> from transformers import GPT2Tokenizer, AutoModelForCausalLM >>> import numpy as np >>> tokenizer = GPT2Tokenizer.from_pretrained("gpt2") >>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2") >>> tokenizer.pad_token_id = tokenizer.eos_token_id >>> inputs = tokenizer(["Today is"], return_tensors="pt") >>> # Example 1: Print the scores for each token generated with Greedy Search >>> outputs = model.generate(**inputs, max_new_tokens=5, return_dict_in_generate=True, output_scores=True) >>> transition_scores = model.compute_transition_scores( ... outputs.sequences, outputs.scores, normalize_logits=True ... ) >>> # input_length is the length of the input prompt for decoder-only models, like the GPT family, and 1 for >>> # encoder-decoder models, like BART or T5. >>> input_length = 1 if model.config.is_encoder_decoder else inputs.input_ids.shape[1] >>> generated_tokens = outputs.sequences[:, input_length:] >>> for tok, score in zip(generated_tokens[0], transition_scores[0]): ... # | token | token string | log probability | probability ... print(f"| {tok:5d} | {tokenizer.decode(tok):8s} | {score.numpy():.3f} | {np.exp(score.numpy()):.2%}") | 262 | the | -1.414 | 24.33% | 1110 | day | -2.609 | 7.36% | 618 | when | -2.010 | 13.40% | 356 | we | -1.859 | 15.58% | 460 | can | -2.508 | 8.14% >>> # Example 2: Reconstruct the sequence scores from Beam Search >>> outputs = model.generate( ... **inputs, ... max_new_tokens=5, ... num_beams=4, ... num_return_sequences=4, ... return_dict_in_generate=True, ... output_scores=True, ... ) >>> transition_scores = model.compute_transition_scores( ... outputs.sequences, outputs.scores, outputs.beam_indices, normalize_logits=False ... ) >>> # If you sum the generated tokens' scores and apply the length penalty, you'll get the sequence scores. >>> # Tip 1: recomputing the scores is only guaranteed to match with `normalize_logits=False`. Depending on the >>> # use case, you might want to recompute it with `normalize_logits=True`. >>> # Tip 2: the output length does NOT include the input length >>> output_length = np.sum(transition_scores.numpy() < 0, axis=1) >>> length_penalty = model.generation_config.length_penalty >>> reconstructed_scores = transition_scores.sum(axis=1) / (output_length**length_penalty) >>> print(np.allclose(outputs.sequences_scores, reconstructed_scores)) True ```""" # 1. In absence of `beam_indices`, we can assume that we come from e.g. greedy search, which is equivalent # to a beam search approach were the first (and only) beam is always selected if beam_indices is None: beam_indices = torch.arange(scores[0].shape[0]).view(-1, 1).to(sequences.device) beam_indices = beam_indices.expand(-1, len(scores)) # 2. reshape scores as [batch_size*vocab_size, # generation steps] with # generation steps being # seq_len - input_length scores = torch.stack(scores).reshape(len(scores), -1).transpose(0, 1) # 3. Optionally normalize the logits (across the vocab dimension) if normalize_logits: scores = scores.reshape(-1, self.config.vocab_size, scores.shape[-1]) scores = torch.nn.functional.log_softmax(scores, dim=1) scores = scores.reshape(-1, scores.shape[-1]) # 4. cut beam_indices to longest beam length beam_indices_mask = beam_indices < 0 max_beam_length = (1 - beam_indices_mask.long()).sum(-1).max() beam_indices = beam_indices.clone()[:, :max_beam_length] beam_indices_mask = beam_indices_mask[:, :max_beam_length] # 5. Set indices of beams that finished early to 0; such indices will be masked correctly afterwards beam_indices[beam_indices_mask] = 0 # 6. multiply beam_indices with vocab size to gather correctly from scores beam_sequence_indices = beam_indices * self.config.vocab_size # 7. Define which indices contributed to scores cut_idx = sequences.shape[-1] - max_beam_length indices = sequences[:, cut_idx:] + beam_sequence_indices # 8. Compute scores transition_scores = scores.gather(0, indices) # 9. Mask out transition_scores of beams that stopped early transition_scores[beam_indices_mask] = 0 return transition_scores def _validate_model_class(self): """ Confirms that the model class is compatible with generation. If not, raises an exception that points to the right class to use. """ if not is_torchdynamo_compiling() and not self.can_generate(): generate_compatible_mappings = [ MODEL_FOR_CAUSAL_LM_MAPPING, MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING, MODEL_FOR_VISION_2_SEQ_MAPPING, MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING, ] generate_compatible_classes = set() for model_mapping in generate_compatible_mappings: supported_models = model_mapping.get(type(self.config), default=None) if supported_models is not None: generate_compatible_classes.add(supported_models.__name__) exception_message = ( f"The current model class ({self.__class__.__name__}) is not compatible with `.generate()`, as " "it doesn't have a language model head." ) if generate_compatible_classes: exception_message += f" Please use one of the following classes instead: {generate_compatible_classes}" raise TypeError(exception_message) def _validate_assistant(self, assistant_model): if assistant_model is None: return if self.config.is_encoder_decoder and not assistant_model.config.is_encoder_decoder: attributes_to_check = ["encoder_attention_heads", "encoder_ffn_dim", "encoder_layers"] attributes_to_check = [attr for attr in dir(assistant_model.config) if attr in attributes_to_check] are_equal = all( getattr(self.config, attr) == getattr(assistant_model.config, attr) for attr in attributes_to_check ) if not are_equal: raise ValueError( "The main model and the assistant don't have compatible encoder-dependent input shapes. " "Ensure you load the assistant with the correct encoder-decoder class, e.g. `AutoModelForSpeechSeq2Seq` for Whisper." ) if not self.config.vocab_size == assistant_model.config.vocab_size: raise ValueError("Make sure the main and assistant model use the same tokenizer") def _validate_model_kwargs(self, model_kwargs: Dict[str, Any]): """Validates model kwargs for generation. Generate argument typos will also be caught here.""" # If a `Cache` instance is passed, checks whether the model is compatible with it if isinstance(model_kwargs.get("past_key_values", None), Cache) and not self._supports_cache_class: raise ValueError( f"{self.__class__.__name__} does not support an instance of `Cache` as `past_key_values`. Please " "check the model documentation for supported cache formats." ) # Excludes arguments that are handled before calling any model function if self.config.is_encoder_decoder: for key in ["decoder_input_ids"]: model_kwargs.pop(key, None) unused_model_args = [] model_args = set(inspect.signature(self.prepare_inputs_for_generation).parameters) # `kwargs`/`model_kwargs` is often used to handle optional forward pass inputs like `attention_mask`. If # `prepare_inputs_for_generation` doesn't accept them, then a stricter check can be made ;) if "kwargs" in model_args or "model_kwargs" in model_args: model_args |= set(inspect.signature(self.forward).parameters) # Encoder-Decoder models may also need Encoder arguments from `model_kwargs` if self.config.is_encoder_decoder: base_model = getattr(self, self.base_model_prefix, None) # allow encoder kwargs encoder = getattr(self, "encoder", None) # `MusicgenForConditionalGeneration` has `text_encoder` and `audio_encoder`. # Also, it has `base_model_prefix = "encoder_decoder"` but there is no `self.encoder_decoder` # TODO: A better way to handle this. if encoder is None and base_model is not None: encoder = getattr(base_model, "encoder", None) if encoder is not None: encoder_model_args = set(inspect.signature(encoder.forward).parameters) model_args |= encoder_model_args # allow decoder kwargs decoder = getattr(self, "decoder", None) if decoder is None and base_model is not None: decoder = getattr(base_model, "decoder", None) if decoder is not None: decoder_model_args = set(inspect.signature(decoder.forward).parameters) model_args |= {f"decoder_{x}" for x in decoder_model_args} # allow assistant_encoder_outputs to be passed if we're doing assisted generating if "assistant_encoder_outputs" in model_kwargs: model_args |= {"assistant_encoder_outputs"} for key, value in model_kwargs.items(): if value is not None and key not in model_args: unused_model_args.append(key) if unused_model_args: raise ValueError( f"The following `model_kwargs` are not used by the model: {unused_model_args} (note: typos in the" " generate arguments will also show up in this list)" ) def _validate_generated_length(self, generation_config, input_ids_length, has_default_max_length): """Performs validation related to the resulting generated length""" # Can't throw warnings/exceptions during compilation if is_torchdynamo_compiling(): return # 1. Max length warnings related to poor parameterization if has_default_max_length and generation_config.max_new_tokens is None and generation_config.max_length == 20: # 20 is the default max_length of the generation config warnings.warn( f"Using the model-agnostic default `max_length` (={generation_config.max_length}) to control the " "generation length. We recommend setting `max_new_tokens` to control the maximum length of the " "generation.", UserWarning, ) if input_ids_length >= generation_config.max_length: input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids" raise ValueError( f"Input length of {input_ids_string} is {input_ids_length}, but `max_length` is set to" f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider" " increasing `max_length` or, better yet, setting `max_new_tokens`." ) # 2. Min length warnings due to unfeasible parameter combinations min_length_error_suffix = ( " Generation will stop at the defined maximum length. You should decrease the minimum length and/or " "increase the maximum length." ) if has_default_max_length: min_length_error_suffix += ( f" Note that `max_length` is set to {generation_config.max_length}, its default value." ) if generation_config.min_length is not None and generation_config.min_length > generation_config.max_length: warnings.warn( f"Unfeasible length constraints: `min_length` ({generation_config.min_length}) is larger than" f" the maximum possible length ({generation_config.max_length})." + min_length_error_suffix, UserWarning, ) if generation_config.min_new_tokens is not None: min_length = generation_config.min_new_tokens + input_ids_length if min_length > generation_config.max_length: warnings.warn( f"Unfeasible length constraints: `min_new_tokens` ({generation_config.min_new_tokens}), when " f"added to the prompt length ({input_ids_length}), is larger than" f" the maximum possible length ({generation_config.max_length})." + min_length_error_suffix, UserWarning, ) def _prepare_generated_length( self, generation_config, has_default_max_length, has_default_min_length, model_input_name, input_ids_length, inputs_tensor, ): """Prepared max and min length in generaion configs to avoid clashes between similar attributes""" if generation_config.max_new_tokens is not None: if not has_default_max_length and generation_config.max_length is not None: logger.warning( f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(=" f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. " "Please refer to the documentation for more information. " "(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)" ) generation_config.max_length = generation_config.max_new_tokens + input_ids_length # if both `inputs_embeds` and `input_ids` are passed, we do not correct the length # otherwise we need total length [inputs-embeds-len + new-tokens-len] to not go beyond indicated `max_length`` elif ( model_input_name == "inputs_embeds" and input_ids_length != inputs_tensor.shape[1] and not self.config.is_encoder_decoder ): generation_config.max_length -= inputs_tensor.shape[1] # same for min length if generation_config.min_new_tokens is not None: if not has_default_min_length: logger.warning( f"Both `min_new_tokens` (={generation_config.min_new_tokens}) and `min_length`(=" f"{generation_config.min_length}) seem to have been set. `min_new_tokens` will take precedence. " "Please refer to the documentation for more information. " "(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)" ) generation_config.min_length = generation_config.min_new_tokens + input_ids_length elif ( model_input_name == "inputs_embeds" and input_ids_length != inputs_tensor.shape[1] and not self.config.is_encoder_decoder ): generation_config.min_length = max(generation_config.min_length - inputs_tensor.shape[1], 0) return generation_config def _prepare_generation_config( self, generation_config: Optional[GenerationConfig], **kwargs: Dict ) -> Tuple[GenerationConfig, Dict]: """ Prepares the base generation config, then applies any generation configuration options from kwargs. This function handles retrocompatibility with respect to configuration files. """ # TODO joao: when we can detect `fullgraph=True` in `torch.compile` (https://github.com/pytorch/pytorch/pull/120400) # replace `is_torchdynamo_compiling` by the corresponding check. As it is, we are being too restrictive with # the parameterization in `fullgraph=False` so as to enable `fullgraph=True`. # priority: `generation_config` argument > `model.generation_config` (the default generation config) using_model_generation_config = False if generation_config is None: # legacy: users may modify the model configuration to control generation. To trigger this legacy behavior, # three conditions must be met # 1) the generation config must have been created from the model config (`_from_model_config` field); # 2) the generation config must have seen no modification since its creation (the hash is the same); # 3) the user must have set generation parameters in the model config. # NOTE: `torch.compile` can't compile `hash`, this legacy support is disabled with compilation. if ( not is_torchdynamo_compiling() and self.generation_config._from_model_config and self.generation_config._original_object_hash == hash(self.generation_config) and self.config._has_non_default_generation_parameters() ): new_generation_config = GenerationConfig.from_model_config(self.config) if new_generation_config != self.generation_config: warnings.warn( "You have modified the pretrained model configuration to control generation. This is a" " deprecated strategy to control generation and will be removed soon, in a future version." " Please use and modify the model generation configuration (see" " https://huggingface.co/docs/transformers/generation_strategies#default-text-generation-configuration )" ) self.generation_config = new_generation_config using_model_generation_config = True generation_config = self.generation_config using_model_generation_config = True # `torch.compile` can't compile `copy.deepcopy`, arguments in `kwargs` that are part of `generation_config` # will mutate the object with `.update`. As such, passing these arguments through `kwargs` is disabled -- an # exception will be raised in `_validate_model_kwargs` if not is_torchdynamo_compiling(): generation_config = copy.deepcopy(generation_config) model_kwargs = generation_config.update(**kwargs) # If `generation_config` is provided, let's fallback ALL special tokens to the default values for the model if not using_model_generation_config: if generation_config.bos_token_id is None: generation_config.bos_token_id = self.generation_config.bos_token_id if generation_config.eos_token_id is None: generation_config.eos_token_id = self.generation_config.eos_token_id if generation_config.pad_token_id is None: generation_config.pad_token_id = self.generation_config.pad_token_id if generation_config.decoder_start_token_id is None: generation_config.decoder_start_token_id = self.generation_config.decoder_start_token_id else: model_kwargs = kwargs return generation_config, model_kwargs def _get_initial_cache_position(self, input_ids, model_kwargs): """Calculates `cache_position` for the pre-fill stage based on `input_ids` and optionally past length""" # `torch.compile`-friendly `torch.arange` from a shape -- the lines below are equivalent to `torch.arange` if "inputs_embeds" in model_kwargs: cache_position = torch.ones_like(model_kwargs["inputs_embeds"][0, :, 0], dtype=torch.int64).cumsum(0) - 1 else: cache_position = torch.ones_like(input_ids[0, :], dtype=torch.int64).cumsum(0) - 1 past_length = 0 if model_kwargs.get("past_key_values") is not None: cache = model_kwargs["past_key_values"] past_length = 0 if not isinstance(cache, Cache): past_length = cache[0][0].shape[2] elif hasattr(cache, "get_seq_length") and cache.get_seq_length() is not None: past_length = cache.get_seq_length() # TODO(joao): this is not torch.compile-friendly, find a work-around. If the cache is not empty, # end-to-end compilation will yield bad results because `cache_position` will be incorrect. if not is_torchdynamo_compiling(): cache_position = cache_position[past_length:] model_kwargs["cache_position"] = cache_position return model_kwargs def _get_cache( self, cache_implementation: str, max_batch_size: int, max_cache_len: int, device: torch.device, model_kwargs ) -> Cache: """ Sets a cache for `generate`, that will persist across calls. A new cache will only be initialized a new `generate` call requires a larger cache or uses a different batch size. Returns the resulting cache object. """ cache_cls: Cache = NEED_SETUP_CACHE_CLASSES_MAPPING[cache_implementation] requires_cross_attention_cache = ( self.config.is_encoder_decoder or model_kwargs.get("encoder_outputs") is not None ) if hasattr(self, "_cache"): cache_to_check = self._cache.self_attention_cache if requires_cross_attention_cache else self._cache if cache_implementation == "sliding_window": max_cache_len = min(self.config.sliding_window, max_cache_len) need_new_cache = ( not hasattr(self, "_cache") or (not isinstance(cache_to_check, cache_cls)) or cache_to_check.max_batch_size != max_batch_size ) if cache_implementation != "mamba": need_new_cache = need_new_cache or cache_to_check.max_cache_len < max_cache_len if requires_cross_attention_cache and hasattr(self, "_cache"): need_new_cache = ( need_new_cache or self._cache.cross_attention_cache.max_cache_len != model_kwargs["encoder_outputs"][0].shape[1] ) if need_new_cache: if hasattr(self.config, "_pre_quantization_dtype"): cache_dtype = self.config._pre_quantization_dtype else: if not is_torchdynamo_compiling(): cache_dtype = self.dtype else: # NOTE: self.dtype is not compatible with torch.compile, as it calls `self.parameters()`. # Workaround: trust the lm_head, whose attribute name is somewhat consistent across generative # models. May cause trobles with non-text modalities. cache_dtype = self.lm_head.weight.dtype cache_kwargs = { "config": self.config, "max_batch_size": max_batch_size, "max_cache_len": max_cache_len, "device": device, "dtype": cache_dtype, } self._cache = cache_cls(**cache_kwargs) if requires_cross_attention_cache: encoder_kwargs = cache_kwargs.copy() encoder_kwargs["max_cache_len"] = model_kwargs["encoder_outputs"][0].shape[1] self._cache = EncoderDecoderCache(self._cache, cache_cls(**encoder_kwargs)) else: self._cache.reset() return self._cache def _supports_default_dynamic_cache(self) -> bool: """ Return `True` if current model can use a `DynamicCache` instance when initializing the `past_key_values`. This is mostly the same as `_supports_cache_class` attribute, but add exception for `Jamba` model which uses its own `HybridMambaAttentionDynamicCache` and do not need to initialize the Cache in advance in order to save memory (because no back and forth `to_legacy_cache` and `from_legacy_cache` will be performed for `HybridMambaAttentionDynamicCache`). """ return self._supports_cache_class and "jamba" not in self.__class__.__name__.lower() def _prepare_special_tokens( self, generation_config: GenerationConfig, kwargs_has_attention_mask: Optional[bool] = None, device: Optional[Union[torch.device, str]] = None, ): """ Prepares the special tokens for generation, overwriting the generation config with their processed versions converted to tensor. Note that `generation_config` is changed in place and stops being serializable after this method is called. That is no problem if called within `generate` (`generation_config` is a local copy that doesn't leave the function). However, if called outside `generate`, consider creating a copy of `generation_config` first. """ # Convert special tokens to tensors def _tensor_or_none(token, device=None): if token is None: return token device = device if device is not None else self.device if isinstance(token, torch.Tensor): return token.to(device) return torch.tensor(token, device=device, dtype=torch.long) bos_token_tensor = _tensor_or_none(generation_config.bos_token_id, device=device) eos_token_tensor = _tensor_or_none(generation_config.eos_token_id, device=device) pad_token_tensor = _tensor_or_none(generation_config.pad_token_id, device=device) decoder_start_token_tensor = _tensor_or_none(generation_config.decoder_start_token_id, device=device) # for BC we also try to get `decoder_start_token_id` or `bos_token_id` (#30892) if self.config.is_encoder_decoder: decoder_start_token_tensor = ( decoder_start_token_tensor if decoder_start_token_tensor is not None else bos_token_tensor ) # We can have more than one eos token. Always treat it as a 1D tensor (when it exists). if eos_token_tensor is not None and eos_token_tensor.ndim == 0: eos_token_tensor = eos_token_tensor.unsqueeze(0) # Set pad token if unset (and there are conditions to do so) if pad_token_tensor is None and eos_token_tensor is not None: if kwargs_has_attention_mask is not None and not kwargs_has_attention_mask: logger.warning( "The attention mask and the pad token id were not set. As a consequence, you may observe " "unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results." ) pad_token_tensor = eos_token_tensor[0] logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{pad_token_tensor} for open-end generation.") # Sanity checks/warnings if self.config.is_encoder_decoder and decoder_start_token_tensor is None: raise ValueError( "`decoder_start_token_id` or `bos_token_id` has to be defined for encoder-decoder generation." ) if not is_torchdynamo_compiling(): # Checks that depend on tensor-dependent control flow if ( eos_token_tensor is not None and torch.isin(elements=eos_token_tensor, test_elements=pad_token_tensor).any() ): if kwargs_has_attention_mask is not None and not kwargs_has_attention_mask: logger.warning_once( "The attention mask is not set and cannot be inferred from input because pad token is same as " "eos token. As a consequence, you may observe unexpected behavior. Please pass your input's " "`attention_mask` to obtain reliable results." ) if eos_token_tensor is not None and ( torch.is_floating_point(eos_token_tensor) or (eos_token_tensor < 0).any() ): logger.warning( f"`eos_token_id` should consist of positive integers, but is {eos_token_tensor}. Your generation " "will not stop until the maximum length is reached. Depending on other flags, it may even crash." ) # Update generation config with the updated special tokens tensors # NOTE: this must be written into a different attribute name than the one holding the original special tokens # (in their non-tensor form), in order to enable end-to-end compilation. See # https://pytorch.org/docs/stable/torch.compiler_cudagraph_trees.html#limitations generation_config._bos_token_tensor = bos_token_tensor generation_config._eos_token_tensor = eos_token_tensor generation_config._pad_token_tensor = pad_token_tensor generation_config._decoder_start_token_tensor = decoder_start_token_tensor @torch.no_grad() def generate( self, inputs: Optional[torch.Tensor] = None, generation_config: Optional[GenerationConfig] = None, logits_processor: Optional[LogitsProcessorList] = None, stopping_criteria: Optional[StoppingCriteriaList] = None, prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None, synced_gpus: Optional[bool] = None, assistant_model: Optional["PreTrainedModel"] = None, streamer: Optional["BaseStreamer"] = None, negative_prompt_ids: Optional[torch.Tensor] = None, negative_prompt_attention_mask: Optional[torch.Tensor] = None, **kwargs, ) -> Union[GenerateOutput, torch.LongTensor]: r""" Generates sequences of token ids for models with a language modeling head. Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the model's default generation configuration. You can override any `generation_config` by passing the corresponding parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`. For an overview of generation strategies and code examples, check out the [following guide](../generation_strategies). Parameters: inputs (`torch.Tensor` of varying shape depending on the modality, *optional*): The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs` should be in the format of `input_ids`. For encoder-decoder models *inputs* can represent any of `input_ids`, `input_values`, `input_features`, or `pixel_values`. generation_config ([`~generation.GenerationConfig`], *optional*): The generation configuration to be used as base parametrization for the generation call. `**kwargs` passed to generate matching the attributes of `generation_config` will override them. If `generation_config` is not provided, the default will be used, which has the following loading priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s default values, whose documentation should be checked to parameterize generation. logits_processor (`LogitsProcessorList`, *optional*): Custom logits processors that complement the default logits processors built from arguments and generation config. If a logit processor is passed that is already created with the arguments or a generation config an error is thrown. This feature is intended for advanced users. stopping_criteria (`StoppingCriteriaList`, *optional*): Custom stopping criteria that complements the default stopping criteria built from arguments and a generation config. If a stopping criteria is passed that is already created with the arguments or a generation config an error is thrown. If your stopping criteria depends on the `scores` input, make sure you pass `return_dict_in_generate=True, output_scores=True` to `generate`. This feature is intended for advanced users. prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`, *optional*): If provided, this function constraints the beam search to allowed tokens only at each step. If not provided no constraint is applied. This function takes 2 arguments: the batch ID `batch_id` and `input_ids`. It has to return a list with the allowed tokens for the next generation step conditioned on the batch ID `batch_id` and the previously generated tokens `inputs_ids`. This argument is useful for constrained generation conditioned on the prefix, as described in [Autoregressive Entity Retrieval](https://arxiv.org/abs/2010.00904). synced_gpus (`bool`, *optional*): Whether to continue running the while loop until max_length. Unless overridden this flag will be set to `True` under DeepSpeed ZeRO Stage 3 multiple GPUs environment to avoid hanging if one GPU finished generating before other GPUs. Otherwise it'll be set to `False`. assistant_model (`PreTrainedModel`, *optional*): An assistant model that can be used to accelerate generation. The assistant model must have the exact same tokenizer. The acceleration is achieved when forecasting candidate tokens with the assistent model is much faster than running generation with the model you're calling generate from. As such, the assistant model should be much smaller. streamer (`BaseStreamer`, *optional*): Streamer object that will be used to stream the generated sequences. Generated tokens are passed through `streamer.put(token_ids)` and the streamer is responsible for any further processing. negative_prompt_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): The negative prompt needed for some processors such as CFG. The batch size must match the input batch size. This is an experimental feature, subject to breaking API changes in future versions. negative_prompt_attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Attention_mask for `negative_prompt_ids`. kwargs (`Dict[str, Any]`, *optional*): Ad hoc parametrization of `generation_config` and/or additional model-specific kwargs that will be forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*. Return: [`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True` or when `config.return_dict_in_generate=True`) or a `torch.LongTensor`. If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible [`~utils.ModelOutput`] types are: - [`~generation.GenerateDecoderOnlyOutput`], - [`~generation.GenerateBeamDecoderOnlyOutput`] If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible [`~utils.ModelOutput`] types are: - [`~generation.GenerateEncoderDecoderOutput`], - [`~generation.GenerateBeamEncoderDecoderOutput`] """ # 1. Handle `generation_config` and kwargs that might update it, and validate the `.generate()` call self._validate_model_class() tokenizer = kwargs.pop("tokenizer", None) # Pull this out first, we only use it for stopping criteria generation_config, model_kwargs = self._prepare_generation_config(generation_config, **kwargs) self._validate_model_kwargs(model_kwargs.copy()) self._validate_assistant(assistant_model) # 2. Set generation parameters if not already defined if synced_gpus is None: if is_deepspeed_zero3_enabled() and dist.get_world_size() > 1: synced_gpus = True else: synced_gpus = False logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList() stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList() accepts_attention_mask = "attention_mask" in set(inspect.signature(self.forward).parameters.keys()) requires_attention_mask = "encoder_outputs" not in model_kwargs kwargs_has_attention_mask = model_kwargs.get("attention_mask", None) is not None # 3. Define model inputs inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs( inputs, generation_config.bos_token_id, model_kwargs ) batch_size = inputs_tensor.shape[0] device = inputs_tensor.device self._prepare_special_tokens(generation_config, kwargs_has_attention_mask, device=device) # decoder-only models must use left-padding for batched generation. if not self.config.is_encoder_decoder and not is_torchdynamo_compiling(): # If `input_ids` was given, check if the last id in any sequence is `pad_token_id` # Note: If using, `inputs_embeds` this check does not work, because we want to be more hands-off. if ( generation_config._pad_token_tensor is not None and batch_size > 1 and len(inputs_tensor.shape) == 2 and torch.sum(inputs_tensor[:, -1] == generation_config._pad_token_tensor) > 0 ): logger.warning( "A decoder-only architecture is being used, but right-padding was detected! For correct " "generation results, please set `padding_side='left'` when initializing the tokenizer." ) # 4. Define other model kwargs # decoder-only models with inputs_embeds forwarding must use caching (otherwise we can't detect whether we are # generating the first new token or not, and we only want to use the embeddings for the first new token) if not self.config.is_encoder_decoder and model_input_name == "inputs_embeds": model_kwargs["use_cache"] = True else: model_kwargs["use_cache"] = generation_config.use_cache if not kwargs_has_attention_mask and requires_attention_mask and accepts_attention_mask: model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation( inputs_tensor, generation_config._pad_token_tensor, generation_config._eos_token_tensor ) if self.config.is_encoder_decoder and "encoder_outputs" not in model_kwargs: # if model is encoder decoder encoder_outputs are created and added to `model_kwargs` model_kwargs = self._prepare_encoder_decoder_kwargs_for_generation( inputs_tensor, model_kwargs, model_input_name, generation_config ) # 5. Prepare `input_ids` which will be used for auto-regressive generation if self.config.is_encoder_decoder: input_ids, model_kwargs = self._prepare_decoder_input_ids_for_generation( batch_size=batch_size, model_input_name=model_input_name, model_kwargs=model_kwargs, decoder_start_token_id=generation_config._decoder_start_token_tensor, device=inputs_tensor.device, ) else: input_ids = inputs_tensor if model_input_name == "input_ids" else model_kwargs.pop("input_ids") if generation_config.token_healing: input_ids = self.heal_tokens(input_ids, tokenizer) if streamer is not None: streamer.put(input_ids.cpu()) # 6. Prepare `max_length` depending on other stopping criteria. input_ids_length = input_ids.shape[-1] has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None has_default_min_length = kwargs.get("min_length") is None and generation_config.min_length is not None generation_config = self._prepare_generated_length( generation_config=generation_config, has_default_max_length=has_default_max_length, has_default_min_length=has_default_min_length, model_input_name=model_input_name, inputs_tensor=inputs_tensor, input_ids_length=input_ids_length, ) use_dynamic_cache_by_default = False if "mamba" in self.__class__.__name__.lower(): cache_name = "cache_params" else: cache_name = "past_key_values" # TODO(joao): support static caches in assisted generation. assisted generation needs to roll back caches, # which is only supported in dynamic caches atm if ( assistant_model is not None and generation_config.cache_implementation is not None and self._supports_default_dynamic_cache() ): logger.warning_once( "An assistant model is provided, using a dynamic cache instead of a cache of type=" f"'{generation_config.cache_implementation}'." ) generation_config.cache_implementation = None if (model_kwargs.get(cache_name) is not None) and is_torchdynamo_compiling(): raise ValueError( "Passing `past_key_values` is not supported when compiling `model.generate` with torch.compile -- you " "may get incorrect outputs. Please compile `model.forward` only or use the `cache_implementation` " "input argument." ) if generation_config.cache_implementation is not None and (model_kwargs.get(cache_name) is not None): raise ValueError( f"Passing both `cache_implementation` (used to initialize certain caches) and `{cache_name}` (a " "Cache object) is unsupported. Please use only one of the two." ) elif generation_config.cache_implementation is not None: if generation_config.cache_implementation in NEED_SETUP_CACHE_CLASSES_MAPPING: if generation_config.cache_implementation == "static" and not self._supports_static_cache: raise ValueError( "This model does not support `cache_implementation='static'`. Please check the following " "issue: https://github.com/huggingface/transformers/issues/28981" ) model_kwargs[cache_name] = self._get_cache( cache_implementation=generation_config.cache_implementation, max_batch_size=generation_config.num_beams * generation_config.num_return_sequences * batch_size, max_cache_len=generation_config.max_length, device=device, model_kwargs=model_kwargs, ) elif generation_config.cache_implementation == "quantized": if not self._supports_quantized_cache: raise ValueError( "This model does not support the quantized cache. If you want your model to support quantized " "cache, please open an issue." ) cache_config = ( generation_config.cache_config if generation_config.cache_config is not None else QuantizedCacheConfig() ) cache_class = QUANT_BACKEND_CLASSES_MAPPING[cache_config.backend] if cache_config.backend == "quanto" and not is_quanto_available(): raise ImportError( "You need to install `quanto` in order to use KV cache quantization with quanto backend. " "Please install it via with `pip install quanto`" ) elif cache_config.backend == "HQQ" and not is_hqq_available(): raise ImportError( "You need to install `HQQ` in order to use KV cache quantization with HQQ backend. " "Please install it via with `pip install hqq`" ) model_kwargs[cache_name] = cache_class(cache_config) elif generation_config.cache_implementation == "offloaded": model_kwargs[cache_name] = OffloadedCache() # Use DynamicCache() instance by default. This will avoid back and forth from legacy format that # keeps copying the cache thus using much more memory elif generation_config.cache_implementation is None and self._supports_default_dynamic_cache(): past = model_kwargs.get(cache_name, None) requires_cross_attention_cache = ( self.config.is_encoder_decoder or model_kwargs.get("encoder_outputs") is not None ) if past is None: model_kwargs[cache_name] = ( DynamicCache() if not requires_cross_attention_cache else EncoderDecoderCache(DynamicCache(), DynamicCache()) ) use_dynamic_cache_by_default = True elif isinstance(past, tuple): model_kwargs[cache_name] = ( DynamicCache.from_legacy_cache(past) if not requires_cross_attention_cache else EncoderDecoderCache.from_legacy_cache(past) ) use_dynamic_cache_by_default = True self._validate_generated_length(generation_config, input_ids_length, has_default_max_length) # 7. determine generation mode generation_mode = generation_config.get_generation_mode(assistant_model) if streamer is not None and (generation_config.num_beams > 1): raise ValueError( "`streamer` cannot be used with beam search (yet!). Make sure that `num_beams` is set to 1." ) if not is_torchdynamo_compiling() and self.device.type != input_ids.device.type: warnings.warn( "You are calling .generate() with the `input_ids` being on a device type different" f" than your model's device. `input_ids` is on {input_ids.device.type}, whereas the model" f" is on {self.device.type}. You may experience unexpected behaviors or slower generation." " Please make sure that you have put `input_ids` to the" f" correct device by calling for example input_ids = input_ids.to('{self.device.type}') before" " running `.generate()`.", UserWarning, ) # 8. prepare distribution pre_processing samplers prepared_logits_processor = self._get_logits_processor( generation_config=generation_config, input_ids_seq_length=input_ids_length, encoder_input_ids=inputs_tensor, prefix_allowed_tokens_fn=prefix_allowed_tokens_fn, logits_processor=logits_processor, device=inputs_tensor.device, model_kwargs=model_kwargs, negative_prompt_ids=negative_prompt_ids, negative_prompt_attention_mask=negative_prompt_attention_mask, ) # 9. prepare stopping criteria prepared_stopping_criteria = self._get_stopping_criteria( generation_config=generation_config, stopping_criteria=stopping_criteria, tokenizer=tokenizer, **kwargs ) # 10. go into different generation modes if generation_mode == GenerationMode.ASSISTED_GENERATION: if generation_config.num_return_sequences > 1: raise ValueError( "num_return_sequences has to be 1 when doing assisted generate, " f"but is {generation_config.num_return_sequences}." ) if batch_size > 1: raise ValueError("assisted generate is only supported for batch_size = 1") if not model_kwargs["use_cache"]: raise ValueError("assisted generate requires `use_cache=True`") if generation_config.cache_implementation == "static": raise ValueError("assisted generate is not supported with `static_cache`") if self._is_stateful: # In assisted generation we need the ability to confirm whether the model would pick certain tokens, # which is not possible with stateful models (they can't reset to a previous subset of generated text) raise ValueError( f"assisted generation is not supported with stateful models, such as {self.__class__.__name__}" ) # 11. Get the candidate generator, given the parameterization candidate_generator = self._get_candidate_generator( generation_config=generation_config, input_ids=input_ids, inputs_tensor=inputs_tensor, assistant_model=assistant_model, logits_processor=logits_processor, model_kwargs=model_kwargs, ) # 12. prepare logits warper (if `do_sample` is `True`) prepared_logits_warper = ( self._get_logits_warper( generation_config, device=input_ids.device, ) if generation_config.do_sample else None ) # 13. run assisted generate result = self._assisted_decoding( input_ids, candidate_generator=candidate_generator, logits_processor=prepared_logits_processor, logits_warper=prepared_logits_warper, stopping_criteria=prepared_stopping_criteria, generation_config=generation_config, synced_gpus=synced_gpus, streamer=streamer, **model_kwargs, ) elif generation_mode == GenerationMode.DOLA_GENERATION: if self._is_stateful: # DoLa decoding was not designed for stateful models, and would require some changes raise ValueError( f"dola decoding is not supported with stateful models, such as {self.__class__.__name__}" ) prepared_logits_warper = ( self._get_logits_warper(generation_config, device=input_ids.device) if generation_config.do_sample else None ) result = self._dola_decoding( input_ids, dola_layers=generation_config.dola_layers, logits_processor=prepared_logits_processor, logits_warper=prepared_logits_warper, stopping_criteria=prepared_stopping_criteria, generation_config=generation_config, synced_gpus=synced_gpus, streamer=streamer, **model_kwargs, ) elif generation_mode == GenerationMode.CONTRASTIVE_SEARCH: if not model_kwargs["use_cache"]: raise ValueError("Contrastive search requires `use_cache=True`") if self._is_stateful: # Just like assisted generation, we need to be able to rollback to a previous state (see comment above) raise ValueError( f"contrastive search is not supported with stateful models, such as {self.__class__.__name__}" ) result = self._contrastive_search( input_ids, logits_processor=prepared_logits_processor, stopping_criteria=prepared_stopping_criteria, generation_config=generation_config, synced_gpus=synced_gpus, streamer=streamer, **model_kwargs, ) elif generation_mode in (GenerationMode.SAMPLE, GenerationMode.GREEDY_SEARCH): # 11. prepare logits warper prepared_logits_warper = ( self._get_logits_warper(generation_config, device=input_ids.device) if generation_config.do_sample else None ) # 12. expand input_ids with `num_return_sequences` additional sequences per batch input_ids, model_kwargs = self._expand_inputs_for_generation( input_ids=input_ids, expand_size=generation_config.num_return_sequences, is_encoder_decoder=self.config.is_encoder_decoder, **model_kwargs, ) # 13. run sample (it degenerates to greedy search when `generation_config.do_sample=False`) result = self._sample( input_ids, logits_processor=prepared_logits_processor, logits_warper=prepared_logits_warper, stopping_criteria=prepared_stopping_criteria, generation_config=generation_config, synced_gpus=synced_gpus, streamer=streamer, **model_kwargs, ) elif generation_mode in (GenerationMode.BEAM_SAMPLE, GenerationMode.BEAM_SEARCH): # 11. prepare logits warper prepared_logits_warper = ( self._get_logits_warper(generation_config, device=input_ids.device) if generation_config.do_sample else None ) # 12. prepare beam search scorer beam_scorer = BeamSearchScorer( batch_size=batch_size, num_beams=generation_config.num_beams, device=inputs_tensor.device, length_penalty=generation_config.length_penalty, do_early_stopping=generation_config.early_stopping, num_beam_hyps_to_keep=generation_config.num_return_sequences, max_length=generation_config.max_length, ) # 13. interleave input_ids with `num_beams` additional sequences per batch input_ids, model_kwargs = self._expand_inputs_for_generation( input_ids=input_ids, expand_size=generation_config.num_beams, is_encoder_decoder=self.config.is_encoder_decoder, **model_kwargs, ) # 14. run beam sample result = self._beam_search( input_ids, beam_scorer, logits_processor=prepared_logits_processor, logits_warper=prepared_logits_warper, stopping_criteria=prepared_stopping_criteria, generation_config=generation_config, synced_gpus=synced_gpus, **model_kwargs, ) elif generation_mode == GenerationMode.GROUP_BEAM_SEARCH: # 11. prepare beam search scorer beam_scorer = BeamSearchScorer( batch_size=batch_size, num_beams=generation_config.num_beams, device=inputs_tensor.device, length_penalty=generation_config.length_penalty, do_early_stopping=generation_config.early_stopping, num_beam_hyps_to_keep=generation_config.num_return_sequences, num_beam_groups=generation_config.num_beam_groups, max_length=generation_config.max_length, ) # 12. interleave input_ids with `num_beams` additional sequences per batch input_ids, model_kwargs = self._expand_inputs_for_generation( input_ids=input_ids, expand_size=generation_config.num_beams, is_encoder_decoder=self.config.is_encoder_decoder, **model_kwargs, ) # 13. run beam search result = self._group_beam_search( input_ids, beam_scorer, logits_processor=prepared_logits_processor, stopping_criteria=prepared_stopping_criteria, generation_config=generation_config, synced_gpus=synced_gpus, **model_kwargs, ) elif generation_mode == GenerationMode.CONSTRAINED_BEAM_SEARCH: final_constraints = [] if generation_config.constraints is not None: final_constraints = generation_config.constraints if generation_config.force_words_ids is not None: def typeerror(): raise ValueError( "`force_words_ids` has to either be a `List[List[List[int]]]` or `List[List[int]]` " f"of positive integers, but is {generation_config.force_words_ids}." ) if ( not isinstance(generation_config.force_words_ids, list) or len(generation_config.force_words_ids) == 0 ): typeerror() for word_ids in generation_config.force_words_ids: if isinstance(word_ids[0], list): if not isinstance(word_ids, list) or len(word_ids) == 0: typeerror() if any(not isinstance(token_ids, list) for token_ids in word_ids): typeerror() if any( any((not isinstance(token_id, int) or token_id < 0) for token_id in token_ids) for token_ids in word_ids ): typeerror() constraint = DisjunctiveConstraint(word_ids) else: if not isinstance(word_ids, list) or len(word_ids) == 0: typeerror() if any((not isinstance(token_id, int) or token_id < 0) for token_id in word_ids): typeerror() constraint = PhrasalConstraint(word_ids) final_constraints.append(constraint) # 11. prepare beam search scorer constrained_beam_scorer = ConstrainedBeamSearchScorer( constraints=final_constraints, batch_size=batch_size, num_beams=generation_config.num_beams, device=inputs_tensor.device, length_penalty=generation_config.length_penalty, do_early_stopping=generation_config.early_stopping, num_beam_hyps_to_keep=generation_config.num_return_sequences, max_length=generation_config.max_length, ) # 12. interleave input_ids with `num_beams` additional sequences per batch input_ids, model_kwargs = self._expand_inputs_for_generation( input_ids=input_ids, expand_size=generation_config.num_beams, is_encoder_decoder=self.config.is_encoder_decoder, **model_kwargs, ) # 13. run beam search result = self._constrained_beam_search( input_ids, constrained_beam_scorer=constrained_beam_scorer, logits_processor=prepared_logits_processor, stopping_criteria=prepared_stopping_criteria, generation_config=generation_config, synced_gpus=synced_gpus, **model_kwargs, ) # Convert to legacy cache if needed if use_dynamic_cache_by_default and generation_config.return_legacy_cache: if isinstance(result, ModelOutput) and hasattr(result, "past_key_values"): if isinstance(result.past_key_values, (DynamicCache, EncoderDecoderCache)): result.past_key_values = result.past_key_values.to_legacy_cache() return result def _has_unfinished_sequences( self, this_peer_finished: bool, synced_gpus: bool, device: torch.device, cur_len: Optional[int] = None, max_length: Optional[int] = None, ) -> bool: """ Returns whether there are still unfinished sequences in the device. The existence of unfinished sequences is fed through `this_peer_finished`. ZeRO stage 3-friendly. """ # torch.compile does not support data-dependent control flow. This is a workaround to allow torch.compile, # although we lose the ability to stop when all sequences return an EOS token (and other stopping criteria) # TODO (joao): remove this when torch's support for control flow is not experimental (https://pytorch.org/docs/stable/generated/torch.cond.html) if is_torchdynamo_compiling(): return cur_len < max_length else: if synced_gpus: # Under synced_gpus the `forward` call must continue until all gpus complete their sequence. # The following logic allows an early break if all peers finished generating their sequence this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(device) # send 0.0 if we finished, 1.0 otherwise dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM) # did all peers finish? the reduced sum will be 0.0 then if this_peer_finished_flag.item() == 0.0: return False elif this_peer_finished: return False return True def heal_tokens( self, input_ids: torch.LongTensor, tokenizer: Optional["PreTrainedTokenizerBase"] = None ) -> torch.LongTensor: r""" Generates sequences of token ids for models with a language modeling head. Parameters: input_ids (`torch.LongTensor`): The sequence used as a prompt for the generation. tokenizer (`PreTrainedTokenizerBase`, *optional*): The tokenizer used to decode the input ids. Return: `torch.LongTensor` where each sequence has its tail token replaced with its appropriate extension. """ if tokenizer is None: raise ValueError( " When generating with token healing, you must pass the model's tokenizer to the `tokenizer` " "argument of `generate`." ) bos_token_id, pad_token_id = tokenizer.bos_token_id, tokenizer.pad_token_id vocab_trie = ExtensionsTrie(tokenizer.get_vocab()) generation_config = GenerationConfig(max_new_tokens=1, pad_token_id=pad_token_id) # assumption: leading/trailing whitespace is not meaningful, so the prompts are # stripped before re-tokenizing to desensitize generation to whitespace artefacts prompts = [p.strip() for p in tokenizer.batch_decode(input_ids, skip_special_tokens=True)] input_ids = tokenizer( prompts, return_tensors="pt", padding=True, ).input_ids.to(input_ids.device) # replace bos with pad to not condition healing on it input_ids = torch.where(input_ids == bos_token_id, pad_token_id, input_ids) tail_ids = input_ids[:, -1].tolist() space_tok = tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids(" "))[0] # tail tokens are used for a prefix search, thus, whitespaces are replaced with # their tokenization (e.g. 'Ġ') to enable search for tokens prefixed with a whitespace tail_toks = (tokenizer.decode(t).replace(" ", space_tok) for t in tail_ids) for batch_idx, (tail_id, tail_tok) in enumerate(zip(tail_ids, tail_toks)): batch_ids = input_ids[batch_idx] if torch.all(batch_ids == pad_token_id).item(): continue # skip empty sequences (all pad ids) # apply bias for alternatives (extensions) to the tail token seq_bias = {(alt_tok,): 10.0 for alt_tok in vocab_trie.values(prefix=tail_tok)} if len(seq_bias) == 1: continue # skip if there are no token alternatives to heal with # slightly favor original token to limit aggressive healing e.g. 'http' -> 'https' seq_bias[(tail_id,)] += 1.0 generation_config.update(sequence_bias=seq_bias) trimmed_ids = batch_ids[:-1] # if the prompt is a single (non-pad) token, regenerate from bos if len(batch_ids[batch_ids != pad_token_id]) == 1: trimmed_ids[-1] = bos_token_id input_ids[batch_idx] = self.generate(trimmed_ids.unsqueeze(0), generation_config=generation_config) return input_ids def contrastive_search(self, *args, **kwargs): logger.warning_once( "Calling `contrastive_search` directly is deprecated and will be removed in v4.41. Use `generate` or a " "custom generation loop instead.", ) return self._contrastive_search(*args, **kwargs) def _dola_decoding( self, input_ids: torch.LongTensor, dola_layers: Union[str, List[int]], logits_processor: LogitsProcessorList, stopping_criteria: StoppingCriteriaList, generation_config: GenerationConfig, synced_gpus: bool, streamer: "BaseStreamer", logits_warper: Optional[LogitsProcessorList], **model_kwargs, ) -> Union[GenerateNonBeamOutput, torch.LongTensor]: r""" Generates sequences of token ids for models with a language modeling head using **dola decoding** and can be used for decoder-only text models. The method is based on the paper "DoLa: Decoding by Contrasting Layers Improves Factuality in Large Language Models" (https://arxiv.org/abs/2309.03883) in ICLR 2024. Parameters: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): The sequence used as a prompt for the generation. dola_layers (`Union[str, List[int]]`): The candidate layers used in contrasting layers of DoLa. It can be either 1) 'low' or 'high', which means the lower part or higher part of the model layers, respectively, or 2) a list of layer indices to be used for candidate layers. The 0-th layer is the word embedding layer of the model. logits_processor (`LogitsProcessorList`): An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`] used to modify the prediction scores of the language modeling head applied at each generation step. stopping_criteria (`StoppingCriteriaList`, *optional*): An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`] used to tell if the generation loop should stop. generation_config ([`~generation.GenerationConfig`]): The generation configuration to be used as parametrization of the decoding method. synced_gpus (`bool`): Whether to continue running the while loop until max_length (needed for ZeRO stage 3) streamer (`BaseStreamer`, *optional*): Streamer object that will be used to stream the generated sequences. Generated tokens are passed through `streamer.put(token_ids)` and the streamer is responsible for any further processing. logits_warper (`LogitsProcessorList`, *optional*): An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsWarper`] used to warp the prediction score distribution of the language modeling head applied before multinomial sampling at each generation step. model_kwargs: Additional model specific keyword arguments will be forwarded to the `forward` function of the model. If model is an encoder-decoder model the kwargs should include `encoder_outputs`. Return: [`~generation.GenerateDecoderOnlyOutput`], [`~generation.GenerateEncoderDecoderOutput`] or `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a [`~generation.GenerateDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and `return_dict_in_generate=True` or a [`~generation.GenerateEncoderDecoderOutput`] if `model.config.is_encoder_decoder=True`. """ if self.config.is_encoder_decoder: raise ValueError("DoLa decoding is only available for decoder-only models.") # init values pad_token_id = generation_config._pad_token_tensor output_attentions = generation_config.output_attentions output_hidden_states = generation_config.output_hidden_states output_scores = generation_config.output_scores output_logits = generation_config.output_logits return_dict_in_generate = generation_config.return_dict_in_generate has_eos_stopping_criteria = any(hasattr(criteria, "eos_token_id") for criteria in stopping_criteria) do_sample = generation_config.do_sample if do_sample is True and not isinstance(logits_warper, LogitsProcessorList): raise ValueError( "`do_sample` is set to `True`, `logits_warper` must be a `LogitsProcessorList` instance (it is " f"{logits_warper})." ) # init attention / hidden states / scores tuples scores = () if (return_dict_in_generate and output_scores) else None raw_logits = () if (return_dict_in_generate and output_logits) else None decoder_attentions = () if (return_dict_in_generate and output_attentions) else None cross_attentions = () if (return_dict_in_generate and output_attentions) else None decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None # keep track of which sequences are already finished batch_size = input_ids.shape[0] unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device) model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs) this_peer_finished = False # prepare layers for DoLa decoding final_layer = self.config.num_hidden_layers # if the model has tied word embeddings, we skip the word embeddings (0-th) layer and start from the 2nd layer, # as the early exit from word embeddings will become identity function # if the model is really shallow (<=2 layers), we use the 1st layer if it's not the final layer and the 0-th # layer otherwise. Notice that DoLa does not help shallow models much. if not self.config.tie_word_embeddings: start_layer = 0 elif final_layer > 2: start_layer = 2 elif final_layer == 2: start_layer = 1 else: start_layer = 0 # For `N`-layer models with `N <= 40` layers, the layers of `range(0, N // 2, 2)` and `range(N // 2, N, 2)` # are used for `'low'` and `'high'` layers, respectively. # For models with `N > 40` layers, the layers of `range(0, 20, 2)` and `range(N - 20, N, 2)` are used for # `'low'` and `'high'` layers, respectively. if isinstance(dola_layers, str) and dola_layers == "low": if start_layer == final_layer // 2: candidate_premature_layers = [start_layer] else: candidate_premature_layers = ( list(range(start_layer, final_layer // 2, 2)) if final_layer <= 40 else list(range(start_layer, 20, 2)) ) elif isinstance(dola_layers, str) and dola_layers == "high": candidate_premature_layers = ( list(range(final_layer // 2, final_layer, 2)) if final_layer <= 40 else list(range(final_layer - 20, final_layer, 2)) ) # Set the `dola_layers` to a list of integers for layer indices to contrast manually specified layers. elif isinstance(dola_layers, list): candidate_premature_layers = [i for i in dola_layers if i < final_layer] else: raise ValueError("dola_layers must be either 'low', 'high' or a list of integers.") lm_head = self.get_output_embeddings() if lm_head is None: raise ValueError("DoLa is not supported for models that don't have output embeddings.") while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device): # prepare model inputs model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs) # forward pass to get next token outputs = self( **model_inputs, return_dict=True, output_attentions=output_attentions, output_hidden_states=True, ) final_layer_next_token_logits = outputs.logits[:, -1, :].detach().clone() final_logits = outputs.logits[:, -1, :] candidate_premature_logits = {} for candidate_premature_layer in candidate_premature_layers: candidate_premature_logits[candidate_premature_layer] = lm_head( outputs.hidden_states[candidate_premature_layer][:, -1, :] ) if synced_gpus and this_peer_finished: continue # don't waste resources running the code we don't need next_token_logits = _dola_select_contrast( candidate_premature_layers, candidate_premature_logits, final_logits ) # pre-process distribution next_token_scores = logits_processor(input_ids, next_token_logits) if do_sample: # sample next_token_scores = logits_warper(input_ids, next_token_scores) # Store scores, attentions and hidden_states when required if return_dict_in_generate: if output_scores: scores += (next_token_scores,) if output_logits: raw_logits += (final_layer_next_token_logits,) if output_attentions: decoder_attentions += ( (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,) ) if self.config.is_encoder_decoder: cross_attentions += (outputs.cross_attentions,) if output_hidden_states: decoder_hidden_states += ( (outputs.decoder_hidden_states,) if self.config.is_encoder_decoder else (outputs.hidden_states,) ) if do_sample: # sample probs = nn.functional.softmax(next_token_scores, dim=-1) next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1) else: # argmax next_tokens = torch.argmax(next_token_scores, dim=-1) # finished sentences should have their next token be a padding token if has_eos_stopping_criteria: next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences) # update generated ids, model inputs, and length for next step input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1) if streamer is not None: streamer.put(next_tokens.cpu()) model_kwargs = self._update_model_kwargs_for_generation( outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder, ) # stop when each sentence is finished unfinished_sequences = unfinished_sequences & ~stopping_criteria(input_ids, scores) this_peer_finished = unfinished_sequences.max() == 0 if streamer is not None: streamer.end() if return_dict_in_generate: return GenerateDecoderOnlyOutput( sequences=input_ids, scores=scores, logits=raw_logits, attentions=decoder_attentions, hidden_states=decoder_hidden_states, past_key_values=model_kwargs.get("past_key_values"), ) else: return input_ids @torch.no_grad() def _contrastive_search( self, input_ids: torch.LongTensor, logits_processor: LogitsProcessorList, stopping_criteria: StoppingCriteriaList, generation_config: GenerationConfig, synced_gpus: bool, streamer: Optional["BaseStreamer"], **model_kwargs, ) -> Union[GenerateNonBeamOutput, torch.LongTensor]: r""" Generates sequences of token ids for models with a language modeling head using **contrastive search** and can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models. Parameters: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): The sequence used as a prompt for the generation. logits_processor (`LogitsProcessorList`): An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`] used to modify the prediction scores of the language modeling head applied at each generation step. stopping_criteria (`StoppingCriteriaList`): An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`] used to tell if the generation loop should stop. generation_config ([`~generation.GenerationConfig`]): The generation configuration to be used as parametrization of the decoding method. synced_gpus (`bool`): Whether to continue running the while loop until max_length (needed for ZeRO stage 3) streamer (`BaseStreamer`, *optional*): Streamer object that will be used to stream the generated sequences. Generated tokens are passed through `streamer.put(token_ids)` and the streamer is responsible for any further processing. model_kwargs: Additional model specific keyword arguments will be forwarded to the `forward` function of the model. If model is an encoder-decoder model the kwargs should include `encoder_outputs`. Return: [`~generation.GenerateDecoderOnlyOutput`], [`~generation.GenerateEncoderDecoderOutput`] or `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a [`~generation.GenerateDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and `return_dict_in_generate=True` or a [`~generation.GenerateEncoderDecoderOutput`] if `model.config.is_encoder_decoder=True`. """ # init values has_eos_stopping_criteria = any(hasattr(criteria, "eos_token_id") for criteria in stopping_criteria) top_k = generation_config.top_k penalty_alpha = generation_config.penalty_alpha pad_token_id = generation_config._pad_token_tensor output_attentions = generation_config.output_attentions output_hidden_states = generation_config.output_hidden_states output_scores = generation_config.output_scores output_logits = generation_config.output_logits return_dict_in_generate = generation_config.return_dict_in_generate sequential = generation_config.low_memory # init attention / hidden states / scores tuples raw_logits = () if (return_dict_in_generate and output_logits) else None scores = () if (return_dict_in_generate and output_scores) else None decoder_attentions = () if (return_dict_in_generate and output_attentions) else None cross_attentions = () if (return_dict_in_generate and output_attentions) else None decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None # if model is an encoder-decoder, retrieve encoder attention weights and hidden states if return_dict_in_generate and self.config.is_encoder_decoder: encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None encoder_hidden_states = ( model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None ) # keep track of which sequences are already finished batch_size = input_ids.shape[0] unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device) model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs) this_peer_finished = False while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device): # if the first step in the loop, encode all the prefix and obtain: (1) past_key_values; # (2) last_hidden_states; (3) logit_for_next_step; (4) update model kwargs for the next step if model_kwargs.get("past_key_values") is None or ( isinstance(model_kwargs["past_key_values"], (Cache, EncoderDecoderCache)) and model_kwargs["past_key_values"].get_seq_length() == 0 ): # prepare inputs model_kwargs["use_cache"] = True model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs) # encode the given prefix and prepare model inputs; encoder-decoder model process the prefix and save # the `encoder_outputs` outputs = self( **model_inputs, return_dict=True, output_hidden_states=True, output_attentions=output_attentions ) # last decoder hidden states will be used to compute the degeneration penalty (cosine similarity with # previous tokens) if self.config.is_encoder_decoder: last_hidden_states = outputs.decoder_hidden_states[-1] else: last_hidden_states = outputs.hidden_states[-1] # next logit for contrastive search to select top-k candidate tokens # Clone is needed to avoid keeping a hanging ref to outputs.logits which may be very large for this first iteration # (the clone itself is always small) logit_for_next_step = outputs.logits[:, -1, :].clone() model_kwargs = self._update_model_kwargs_for_generation( outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder, ) if not sequential: # Expands model inputs top_k times, for batched forward passes (akin to beam search). _, model_kwargs = self._expand_inputs_for_generation( expand_size=top_k, is_encoder_decoder=self.config.is_encoder_decoder, **model_kwargs ) past_key_values = model_kwargs.get("past_key_values") if past_key_values is None: raise ValueError( f"{self.__class__.__name__} does not support caching and therefore **can't** be used " "for contrastive search." ) elif ( not isinstance(past_key_values[0], (tuple, torch.Tensor)) or past_key_values[0][0].shape[0] != batch_size ): raise ValueError( f"{self.__class__.__name__} does not have a standard cache format and therefore **can't** be " "used for contrastive search without further modifications." ) # contrastive_search main logic start: # contrastive search decoding consists of two steps: (1) candidate tokens recall; (2) candidate re-rank by # degeneration penalty processed_logit_for_next_step = logits_processor(input_ids, logit_for_next_step) next_probs = nn.functional.softmax(processed_logit_for_next_step, dim=-1) top_k_probs, top_k_ids = torch.topk(next_probs, dim=-1, k=top_k) # Store scores, attentions and hidden_states when required if return_dict_in_generate: if output_logits: raw_logits += (logit_for_next_step,) if output_scores: scores += (processed_logit_for_next_step,) if output_attentions: decoder_attentions += ( (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,) ) if self.config.is_encoder_decoder: cross_attentions += (outputs.cross_attentions,) if output_hidden_states: decoder_hidden_states += ( (outputs.decoder_hidden_states,) if self.config.is_encoder_decoder else (outputs.hidden_states,) ) # This is needed to properly delete outputs.logits which may be very large for this first iteration # Otherwise a reference to outputs.logits is kept all along until after the next call to self.forward() del outputs if not sequential: # Replicates the new past_key_values to match the `top_k` candidates past = model_kwargs["past_key_values"] # If it is a static cache, modify it in-place layer after layer to save memory if isinstance(past, DynamicCache) or ( isinstance(past, EncoderDecoderCache) and isinstance(past.self_attention_cache, DynamicCache) ): past.batch_repeat_interleave(top_k) else: new_key_values = [] for layer in past: items = [] # item is either the key or the value matrix for item in layer: items.append(item.repeat_interleave(top_k, dim=0)) new_key_values.append(tuple(items)) past = tuple(new_key_values) model_kwargs["past_key_values"] = past if sequential: all_outputs = [] for i in range(top_k): # compute the candidate tokens by the language model and collect their hidden_states next_model_inputs = self.prepare_inputs_for_generation(top_k_ids[:, i].view(-1, 1), **model_kwargs) outputs = self( **next_model_inputs, return_dict=True, output_hidden_states=True, output_attentions=output_attentions, ) if isinstance(outputs["past_key_values"], DynamicCache) or ( isinstance(outputs["past_key_values"], EncoderDecoderCache) and isinstance(outputs["past_key_values"].self_attention_cache, DynamicCache) ): # Remove past K-V from output since we don't need to stack later outputs["past_key_values"] = None # Remove last token from past K-V since we don't want to append it at this point model_kwargs["past_key_values"].crop(-1) all_outputs.append(outputs) outputs = stack_model_outputs(all_outputs) else: # compute the candidate tokens by the language model and collect their hidden_states # assembles top_k_ids into batch of size k next_model_inputs = self.prepare_inputs_for_generation(top_k_ids.view(-1, 1), **model_kwargs) outputs = self( **next_model_inputs, return_dict=True, output_hidden_states=True, output_attentions=output_attentions, ) # This is essential to avoid having a last reference to the big past K-V and double the necesary memory # in the next loop del next_model_inputs # name is different for encoder-decoder and decoder-only models if self.config.is_encoder_decoder: next_hidden = outputs.decoder_hidden_states[-1] full_hidden_states = outputs.decoder_hidden_states else: next_hidden = outputs.hidden_states[-1] full_hidden_states = outputs.hidden_states logits = outputs.logits[:, -1, :] context_hidden = last_hidden_states.repeat_interleave(top_k, dim=0) # compute the degeneration penalty and re-rank the candidates based on the degeneration penalty and the # model confidence. Keeping `selected_idx` on CPU enables multi-device contrastive search and doesn't # introduce (noticeable) slowdowns on single-device runs. selected_idx = _ranking_fast(context_hidden, next_hidden, top_k_probs, penalty_alpha, top_k) selected_idx = selected_idx.to("cpu") # This will be used instead of the previous inneficient torch.stack(torch.split()) augmented_idx = torch.tensor([x + i * top_k for i, x in enumerate(selected_idx)]) # prepare for the next step: (1) next token_id; (2) past_key_values; (3) last_hidden_states for computing # the degeneration penalty; (4) logits for selecting next top-k candidates; (5) selected tokens scores # (model confidence minus degeneration penalty); (6) decoder hidden_states next_tokens = top_k_ids[range(len(top_k_ids)), selected_idx] next_hidden = torch.stack(torch.split(next_hidden.squeeze(dim=1), top_k)) next_hidden = next_hidden[range(batch_size), selected_idx, :] last_hidden_states = torch.cat([last_hidden_states, next_hidden.unsqueeze(1)], dim=1) next_decoder_hidden_states = () for layer in full_hidden_states: layer = torch.stack(torch.split(layer, top_k))[range(batch_size), selected_idx, :] next_decoder_hidden_states += (layer,) # generate past_key_values cache of only the selected token if sequential: next_model_input = self.prepare_inputs_for_generation( top_k_ids[:, selected_idx].view(-1, 1), **model_kwargs ) selected_outputs = self( **next_model_input, return_dict=True, output_hidden_states=False, output_attentions=False, ) next_past_key_values = selected_outputs["past_key_values"] else: _, next_past_key_values = self._extract_past_from_model_output(outputs) # Do it in-place layer per layer to save memory if isinstance(next_past_key_values, DynamicCache) or ( isinstance(next_past_key_values, EncoderDecoderCache) and isinstance(next_past_key_values.self_attention_cache, DynamicCache) ): next_past_key_values.batch_select_indices(augmented_idx) else: new_key_values = [] for layer in next_past_key_values: items = [] # item is either the key or the value matrix for item in layer: items.append(item[augmented_idx, ...]) new_key_values.append(tuple(items)) next_past_key_values = tuple(new_key_values) logit_for_next_step = torch.stack(torch.split(logits, top_k))[range(batch_size), selected_idx, :] # Rebuilds the relevant parts of the model output for the selected token, for use in the next iteration if self.config.is_encoder_decoder: next_step_cross_attentions = () next_step_decoder_attentions = () if output_attentions: for layer in outputs.cross_attentions: layer = torch.stack(torch.split(layer, top_k, dim=0))[range(batch_size), selected_idx, ...] next_step_cross_attentions += (layer,) for layer in outputs.decoder_attentions: layer = torch.stack(torch.split(layer, top_k, dim=0))[range(batch_size), selected_idx, ...] next_step_decoder_attentions += (layer,) outputs = Seq2SeqLMOutput( past_key_values=next_past_key_values, decoder_hidden_states=next_decoder_hidden_states, decoder_attentions=next_step_decoder_attentions or None, cross_attentions=next_step_cross_attentions or None, ) else: next_step_attentions = () if output_attentions: for layer in outputs.attentions: layer = torch.stack(torch.split(layer, top_k, dim=0))[range(batch_size), selected_idx, ...] next_step_attentions += (layer,) outputs = CausalLMOutputWithPast( past_key_values=next_past_key_values, hidden_states=next_decoder_hidden_states, attentions=next_step_attentions or None, ) # contrastive_search main logic end if synced_gpus and this_peer_finished: continue # don't waste resources running the code we don't need # finished sentences should have their next token be a padding token if has_eos_stopping_criteria: next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences) # update generated ids, model inputs, and length for next step input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1) if streamer is not None: streamer.put(next_tokens.cpu()) model_kwargs = self._update_model_kwargs_for_generation( outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder, ) # stop when each sentence is finished unfinished_sequences = unfinished_sequences & ~stopping_criteria(input_ids, scores) this_peer_finished = unfinished_sequences.max() == 0 if streamer is not None: streamer.end() if return_dict_in_generate: # Contrastive search works by forward looking at the next token, so we need to exclude it from # `past_key_values` to be consistent with the other decoding methods if model_kwargs.get("past_key_values") is not None: if isinstance(model_kwargs["past_key_values"], DynamicCache) or ( isinstance(model_kwargs["past_key_values"], EncoderDecoderCache) and isinstance(model_kwargs["past_key_values"].self_attention_cache, DynamicCache) ): model_kwargs["past_key_values"].crop(-1) else: past_key_values = [] for layer in model_kwargs["past_key_values"]: layer_past_key_values = [] for item in layer: layer_past_key_values.append(item[..., :-1, :]) past_key_values.append(tuple(layer_past_key_values)) model_kwargs["past_key_values"] = tuple(past_key_values) if self.config.is_encoder_decoder: return GenerateEncoderDecoderOutput( sequences=input_ids, scores=scores, logits=raw_logits, encoder_attentions=encoder_attentions, encoder_hidden_states=encoder_hidden_states, decoder_attentions=decoder_attentions, cross_attentions=cross_attentions, decoder_hidden_states=decoder_hidden_states, past_key_values=model_kwargs.get("past_key_values"), ) else: return GenerateDecoderOnlyOutput( sequences=input_ids, scores=scores, logits=raw_logits, attentions=decoder_attentions, hidden_states=decoder_hidden_states, past_key_values=model_kwargs.get("past_key_values"), ) else: return input_ids def _sample( self, input_ids: torch.LongTensor, logits_processor: LogitsProcessorList, stopping_criteria: StoppingCriteriaList, generation_config: GenerationConfig, synced_gpus: bool, streamer: Optional["BaseStreamer"], logits_warper: Optional[LogitsProcessorList], **model_kwargs, ) -> Union[GenerateNonBeamOutput, torch.LongTensor]: r""" Generates sequences of token ids for models with a language modeling head using **multinomial sampling** and can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models. Parameters: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): The sequence used as a prompt for the generation. logits_processor (`LogitsProcessorList`): An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`] used to modify the prediction scores of the language modeling head applied at each generation step. stopping_criteria (`StoppingCriteriaList`): An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`] used to tell if the generation loop should stop. generation_config ([`~generation.GenerationConfig`]): The generation configuration to be used as parametrization of the decoding method. synced_gpus (`bool`): Whether to continue running the while loop until max_length (needed for ZeRO stage 3) streamer (`BaseStreamer`, *optional*): Streamer object that will be used to stream the generated sequences. Generated tokens are passed through `streamer.put(token_ids)` and the streamer is responsible for any further processing. logits_warper (`LogitsProcessorList`, *optional*): An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsWarper`] used to warp the prediction score distribution of the language modeling head applied before multinomial sampling at each generation step. Only required with sampling strategies (i.e. `do_sample` is set in `generation_config`) model_kwargs: Additional model specific kwargs will be forwarded to the `forward` function of the model. If model is an encoder-decoder model the kwargs should include `encoder_outputs`. Return: [`~generation.GenerateDecoderOnlyOutput`], [`~generation.GenerateEncoderDecoderOutput`] or `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a [`~generation.GenerateDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and `return_dict_in_generate=True` or a [`~generation.GenerateEncoderDecoderOutput`] if `model.config.is_encoder_decoder=True`. """ # init values pad_token_id = generation_config._pad_token_tensor output_attentions = generation_config.output_attentions output_hidden_states = generation_config.output_hidden_states output_scores = generation_config.output_scores output_logits = generation_config.output_logits return_dict_in_generate = generation_config.return_dict_in_generate max_length = generation_config.max_length has_eos_stopping_criteria = any(hasattr(criteria, "eos_token_id") for criteria in stopping_criteria) do_sample = generation_config.do_sample if do_sample is True and not isinstance(logits_warper, LogitsProcessorList): raise ValueError( "`do_sample` is set to `True`, `logits_warper` must be a `LogitsProcessorList` instance (it is " f"{logits_warper})." ) # init attention / hidden states / scores tuples scores = () if (return_dict_in_generate and output_scores) else None raw_logits = () if (return_dict_in_generate and output_logits) else None decoder_attentions = () if (return_dict_in_generate and output_attentions) else None cross_attentions = () if (return_dict_in_generate and output_attentions) else None decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None # if model is an encoder-decoder, retrieve encoder attention weights and hidden states if return_dict_in_generate and self.config.is_encoder_decoder: encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None encoder_hidden_states = ( model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None ) # keep track of which sequences are already finished batch_size, cur_len = input_ids.shape this_peer_finished = False unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device) model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs) while self._has_unfinished_sequences( this_peer_finished, synced_gpus, device=input_ids.device, cur_len=cur_len, max_length=max_length ): # prepare model inputs model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs) # prepare variable output controls (note: some models won't accept all output controls) model_inputs.update({"output_attentions": output_attentions} if output_attentions else {}) model_inputs.update({"output_hidden_states": output_hidden_states} if output_hidden_states else {}) # forward pass to get next token outputs = self(**model_inputs, return_dict=True) if synced_gpus and this_peer_finished: continue # don't waste resources running the code we don't need # Clone is needed to avoid keeping a hanging ref to outputs.logits which may be very large for first iteration # (the clone itself is always small) next_token_logits = outputs.logits[:, -1, :].clone() # pre-process distribution next_token_scores = logits_processor(input_ids, next_token_logits) if do_sample: next_token_scores = logits_warper(input_ids, next_token_scores) # Store scores, attentions and hidden_states when required if return_dict_in_generate: if output_scores: scores += (next_token_scores,) if output_logits: raw_logits += (next_token_logits,) if output_attentions: decoder_attentions += ( (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,) ) if self.config.is_encoder_decoder: cross_attentions += (outputs.cross_attentions,) if output_hidden_states: decoder_hidden_states += ( (outputs.decoder_hidden_states,) if self.config.is_encoder_decoder else (outputs.hidden_states,) ) # token selection if do_sample: probs = nn.functional.softmax(next_token_scores, dim=-1) # TODO (joao): this OP throws "skipping cudagraphs due to ['incompatible ops']", find solution next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1) else: next_tokens = torch.argmax(next_token_scores, dim=-1) # finished sentences should have their next token be a padding token if has_eos_stopping_criteria: next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences) # update generated ids, model inputs, and length for next step input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1) if streamer is not None: streamer.put(next_tokens.cpu()) model_kwargs = self._update_model_kwargs_for_generation( outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder, ) unfinished_sequences = unfinished_sequences & ~stopping_criteria(input_ids, scores) this_peer_finished = unfinished_sequences.max() == 0 cur_len += 1 # This is needed to properly delete outputs.logits which may be very large for first iteration # Otherwise a reference to outputs is kept which keeps the logits alive in the next iteration del outputs if streamer is not None: streamer.end() if return_dict_in_generate: if self.config.is_encoder_decoder: return GenerateEncoderDecoderOutput( sequences=input_ids, scores=scores, logits=raw_logits, encoder_attentions=encoder_attentions, encoder_hidden_states=encoder_hidden_states, decoder_attentions=decoder_attentions, cross_attentions=cross_attentions, decoder_hidden_states=decoder_hidden_states, past_key_values=model_kwargs.get("past_key_values"), ) else: return GenerateDecoderOnlyOutput( sequences=input_ids, scores=scores, logits=raw_logits, attentions=decoder_attentions, hidden_states=decoder_hidden_states, past_key_values=model_kwargs.get("past_key_values"), ) else: return input_ids def _temporary_reorder_cache(self, past_key_values, beam_idx): """ Temporary function to handle the different types of cache reordering processes while we roll out `Cache`. TODO: standardize cache formats and make all models compatible with `Cache`. It would remove the need for this function, with `Cache.reorder_cache` being the sole remaining code path """ model_class = self.__class__.__name__.lower() # Exception 1: code path for models using the legacy cache format if isinstance(past_key_values, (tuple, list)): past_key_values = self._reorder_cache(past_key_values, beam_idx) # Exception 2: models with different cache formats. These are limited to `DynamicCache` until their # cache format is standardized, to avoid adding complexity to the codebase. elif "gptbigcode" in model_class: if not isinstance(past_key_values, (DynamicCache, EncoderDecoderCache)): raise ValueError( f"Using an unsupported cache format with {model_class}. Currently, it only supports the " "legacy tuple format or `DynamicCache`" ) past_key_values = self._reorder_cache(past_key_values, beam_idx) past_key_values = DynamicCache.from_legacy_cache(past_key_values) # Standard code path: use the `Cache.reorder_cache` else: past_key_values.reorder_cache(beam_idx) return past_key_values def _beam_search( self, input_ids: torch.LongTensor, beam_scorer: BeamScorer, logits_processor: LogitsProcessorList, stopping_criteria: StoppingCriteriaList, generation_config: GenerationConfig, synced_gpus: bool, logits_warper: Optional[LogitsProcessorList], **model_kwargs, ) -> Union[GenerateBeamOutput, torch.LongTensor]: r""" Generates sequences of token ids for models with a language modeling head using **beam search decoding** and can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models. Parameters: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): The sequence used as a prompt for the generation. beam_scorer (`BeamScorer`): An derived instance of [`BeamScorer`] that defines how beam hypotheses are constructed, stored and sorted during generation. For more information, the documentation of [`BeamScorer`] should be read. logits_processor (`LogitsProcessorList`): An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`] used to modify the prediction scores of the language modeling head applied at each generation step. stopping_criteria (`StoppingCriteriaList`: An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`] used to tell if the generation loop should stop. generation_config ([`~generation.GenerationConfig`]): The generation configuration to be used as parametrization of the decoding method. synced_gpus (`bool`): Whether to continue running the while loop until max_length (needed for ZeRO stage 3) logits_warper (`LogitsProcessorList`, *optional*): An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsWarper`] used to warp the prediction score distribution of the language modeling head applied before multinomial sampling at each generation step. Only required with sampling strategies (i.e. `do_sample` is set in `generation_config`) model_kwargs: Additional model specific kwargs will be forwarded to the `forward` function of the model. If model is an encoder-decoder model the kwargs should include `encoder_outputs`. Return: [`generation.GenerateBeamDecoderOnlyOutput`], [`~generation.GenerateBeamEncoderDecoderOutput`] or `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a [`~generation.GenerateBeamDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and `return_dict_in_generate=True` or a [`~generation.GenerateBeamEncoderDecoderOutput`] if `model.config.is_encoder_decoder=True`. """ # init values pad_token_id = generation_config._pad_token_tensor eos_token_id = generation_config._eos_token_tensor output_attentions = generation_config.output_attentions output_hidden_states = generation_config.output_hidden_states output_scores = generation_config.output_scores output_logits = generation_config.output_logits return_dict_in_generate = generation_config.return_dict_in_generate sequential = generation_config.low_memory do_sample = generation_config.do_sample if do_sample is True and not isinstance(logits_warper, LogitsProcessorList): raise ValueError( "`do_sample` is set to `True`, `logits_warper` must be a `LogitsProcessorList` instance (it is " f"{logits_warper})." ) batch_size = len(beam_scorer._beam_hyps) num_beams = beam_scorer.num_beams batch_beam_size, cur_len = input_ids.shape model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs) if num_beams * batch_size != batch_beam_size: raise ValueError( f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}." ) # init attention / hidden states / scores tuples scores = () if (return_dict_in_generate and output_scores) else None raw_logits = () if (return_dict_in_generate and output_logits) else None beam_indices = ( tuple(() for _ in range(batch_beam_size)) if (return_dict_in_generate and output_scores) else None ) decoder_attentions = () if (return_dict_in_generate and output_attentions) else None cross_attentions = () if (return_dict_in_generate and output_attentions) else None decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None # if model is an encoder-decoder, retrieve encoder attention weights and hidden states if return_dict_in_generate and self.config.is_encoder_decoder: encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None encoder_hidden_states = ( model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None ) # initialise score of first beam with 0 and the rest with -1e9. This makes sure that only tokens # of the first beam are considered to avoid sampling the exact same tokens across all beams. beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=input_ids.device) beam_scores[:, 1:] = -1e9 beam_scores = beam_scores.view((batch_size * num_beams,)) this_peer_finished = False decoder_prompt_len = input_ids.shape[-1] # record the prompt length of decoder while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device): model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs) # prepare variable output controls (note: some models won't accept all output controls) model_inputs.update({"output_attentions": output_attentions} if output_attentions else {}) model_inputs.update({"output_hidden_states": output_hidden_states} if output_hidden_states else {}) # if sequential is True, split the input to batches of batch_size and run sequentially if sequential: if any( model_name in self.__class__.__name__.lower() for model_name in [ "fsmt", "reformer", "ctrl", "gpt_bigcode", "transo_xl", "xlnet", "cpm", "jamba", ] ): raise RuntimeError( f"Currently generation for {self.__class__.__name__} is not supported " f"for `low_memory beam_search`. Please open an issue on GitHub if you need this feature." ) inputs_per_sub_batches = _split_model_inputs( model_inputs, split_size=batch_size, full_batch_size=batch_beam_size ) outputs_per_sub_batch = [ self(**inputs_per_sub_batch, return_dict=True) for inputs_per_sub_batch in inputs_per_sub_batches ] outputs = stack_model_outputs(outputs_per_sub_batch) else: # Unchanged original behavior outputs = self(**model_inputs, return_dict=True) if synced_gpus and this_peer_finished: cur_len = cur_len + 1 continue # don't waste resources running the code we don't need # Clone is needed to avoid keeping a hanging ref to outputs.logits which may be very large for first iteration # (the clone itself is always small) next_token_logits = outputs.logits[:, -1, :].clone() next_token_scores = nn.functional.log_softmax( next_token_logits, dim=-1 ) # (batch_size * num_beams, vocab_size) next_token_scores_processed = logits_processor(input_ids, next_token_scores) if do_sample: next_token_scores_processed = logits_warper(input_ids, next_token_scores_processed) next_token_scores = next_token_scores_processed + beam_scores[:, None].expand_as( next_token_scores_processed ) # Store scores, attentions and hidden_states when required if return_dict_in_generate: if output_scores: scores += (next_token_scores_processed,) if output_logits: raw_logits += (next_token_logits,) if output_attentions: decoder_attentions += ( (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,) ) if self.config.is_encoder_decoder: cross_attentions += (outputs.cross_attentions,) if output_hidden_states: decoder_hidden_states += ( (outputs.decoder_hidden_states,) if self.config.is_encoder_decoder else (outputs.hidden_states,) ) # reshape for beam search vocab_size = next_token_scores.shape[-1] next_token_scores = next_token_scores.view(batch_size, num_beams * vocab_size) # Beam token selection: pick 1 + eos_token_id.shape[0] next tokens for each beam so we have at least 1 # non eos token per beam. n_eos_tokens = eos_token_id.shape[0] if eos_token_id is not None else 0 n_tokens_to_keep = max(2, 1 + n_eos_tokens) * num_beams if do_sample: probs = nn.functional.softmax(next_token_scores, dim=-1) next_tokens = torch.multinomial(probs, num_samples=n_tokens_to_keep) next_token_scores = torch.gather(next_token_scores, -1, next_tokens) next_token_scores, _indices = torch.sort(next_token_scores, descending=True, dim=1) next_tokens = torch.gather(next_tokens, -1, _indices) else: next_token_scores, next_tokens = torch.topk( next_token_scores, n_tokens_to_keep, dim=1, largest=True, sorted=True ) next_indices = torch.div(next_tokens, vocab_size, rounding_mode="floor") next_tokens = next_tokens % vocab_size # stateless beam_outputs = beam_scorer.process( input_ids, next_token_scores, next_tokens, next_indices, pad_token_id=pad_token_id, eos_token_id=eos_token_id, beam_indices=beam_indices, decoder_prompt_len=decoder_prompt_len, ) beam_scores = beam_outputs["next_beam_scores"] beam_next_tokens = beam_outputs["next_beam_tokens"] beam_idx = beam_outputs["next_beam_indices"] input_ids = torch.cat([input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1) model_kwargs = self._update_model_kwargs_for_generation( outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder, ) # This is needed to properly delete outputs.logits which may be very large for first iteration # Otherwise a reference to outputs is kept which keeps the logits alive in the next iteration # IMPORTANT: Note that this should appear BEFORE the call to _reorder_cache() to save the maximum memory # (that way the memory peak does not include outputs.logits) del outputs if model_kwargs.get("past_key_values", None) is not None: model_kwargs["past_key_values"] = self._temporary_reorder_cache( model_kwargs["past_key_values"], beam_idx ) if return_dict_in_generate and output_scores: beam_indices = tuple((beam_indices[beam_idx[i]] + (beam_idx[i],) for i in range(len(beam_indices)))) # increase cur_len cur_len = cur_len + 1 if beam_scorer.is_done or all(stopping_criteria(input_ids, scores)): this_peer_finished = True sequence_outputs = beam_scorer.finalize( input_ids, beam_scores, next_tokens, next_indices, pad_token_id=pad_token_id, eos_token_id=eos_token_id, max_length=stopping_criteria.max_length, beam_indices=beam_indices, decoder_prompt_len=decoder_prompt_len, ) if return_dict_in_generate: if not output_scores: sequence_outputs["sequence_scores"] = None if self.config.is_encoder_decoder: return GenerateBeamEncoderDecoderOutput( sequences=sequence_outputs["sequences"], sequences_scores=sequence_outputs["sequence_scores"], scores=scores, logits=raw_logits, beam_indices=sequence_outputs["beam_indices"], encoder_attentions=encoder_attentions, encoder_hidden_states=encoder_hidden_states, decoder_attentions=decoder_attentions, cross_attentions=cross_attentions, decoder_hidden_states=decoder_hidden_states, past_key_values=model_kwargs.get("past_key_values"), ) else: return GenerateBeamDecoderOnlyOutput( sequences=sequence_outputs["sequences"], sequences_scores=sequence_outputs["sequence_scores"], scores=scores, logits=raw_logits, beam_indices=sequence_outputs["beam_indices"], attentions=decoder_attentions, hidden_states=decoder_hidden_states, past_key_values=model_kwargs.get("past_key_values"), ) else: return sequence_outputs["sequences"] def _group_beam_search( self, input_ids: torch.LongTensor, beam_scorer: BeamScorer, logits_processor: LogitsProcessorList, stopping_criteria: StoppingCriteriaList, generation_config: GenerationConfig, synced_gpus: bool, **model_kwargs, ): r""" Generates sequences of token ids for models with a language modeling head using **diverse beam search decoding** and can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models. Parameters: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): The sequence used as a prompt for the generation. beam_scorer (`BeamScorer`): An derived instance of [`BeamScorer`] that defines how beam hypotheses are constructed, stored and sorted during generation. For more information, the documentation of [`BeamScorer`] should be read. logits_processor (`LogitsProcessorList`): An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`] used to modify the prediction scores of the language modeling head applied at each generation step. stopping_criteria (`StoppingCriteriaList`): An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`] used to tell if the generation loop should stop. generation_config ([`~generation.GenerationConfig`]): The generation configuration to be used as parametrization of the decoding method. synced_gpus (`bool`): Whether to continue running the while loop until max_length (needed for ZeRO stage 3) model_kwargs: Additional model specific kwargs that will be forwarded to the `forward` function of the model. If model is an encoder-decoder model the kwargs should include `encoder_outputs`. Return: [`~generation.GenerateBeamDecoderOnlyOutput`], [`~generation.GenerateBeamEncoderDecoderOutput`] or `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a [`~generation.GenerateBeamDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and `return_dict_in_generate=True` or a [`~generation.GenerateBeamEncoderDecoderOutput`] if `model.config.is_encoder_decoder=True`. """ # init values pad_token_id = generation_config._pad_token_tensor eos_token_id = generation_config._eos_token_tensor output_attentions = generation_config.output_attentions output_hidden_states = generation_config.output_hidden_states output_scores = generation_config.output_scores output_logits = generation_config.output_logits return_dict_in_generate = generation_config.return_dict_in_generate num_beams = beam_scorer.num_beams num_beam_groups = beam_scorer.num_beam_groups num_sub_beams = num_beams // num_beam_groups batch_size = len(beam_scorer._beam_hyps) // num_beam_groups device = input_ids.device batch_beam_size, cur_len = input_ids.shape model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs) if return_dict_in_generate and output_scores: beam_indices = [tuple(() for _ in range(num_sub_beams * batch_size)) for _ in range(num_beam_groups)] else: beam_indices = None if num_beams * batch_size != batch_beam_size: raise ValueError( f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}." ) # init attention / hidden states / scores tuples scores = () if (return_dict_in_generate and output_scores) else None raw_logits = () if (return_dict_in_generate and output_logits) else None decoder_attentions = () if (return_dict_in_generate and output_attentions) else None cross_attentions = () if (return_dict_in_generate and output_attentions) else None decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None # if model is an encoder-decoder, retrieve encoder attention weights and hidden states if return_dict_in_generate and self.config.is_encoder_decoder: encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None encoder_hidden_states = ( model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None ) # initialise score of first beam of each group with 0 and the rest with -1e9. This ensures that the beams in # the same group don't produce same tokens everytime. beam_scores = torch.full((batch_size, num_beams), -1e9, dtype=torch.float, device=device) beam_scores[:, ::num_sub_beams] = 0 beam_scores = beam_scores.view((batch_size * num_beams,)) this_peer_finished = False decoder_prompt_len = input_ids.shape[-1] # record the prompt length of decoder while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device): # predicted tokens in cur_len step current_tokens = torch.zeros(batch_size * num_beams, dtype=input_ids.dtype, device=device) # indices which will form the beams in the next time step reordering_indices = torch.zeros(batch_size * num_beams, dtype=torch.long, device=device) # do one decoder step on all beams of all sentences in batch model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs) # prepare variable output controls (note: some models won't accept all output controls) model_inputs.update({"output_attentions": output_attentions} if output_attentions else {}) model_inputs.update({"output_hidden_states": output_hidden_states} if output_hidden_states else {}) outputs = self(**model_inputs, return_dict=True) if synced_gpus and this_peer_finished: cur_len = cur_len + 1 continue # don't waste resources running the code we don't need if output_scores: processed_score = torch.zeros_like(outputs.logits[:, -1, :]) if output_logits: # Clone is needed to avoid keeping a hanging ref to outputs.logits which may be very large for first iteration # (the clone itself is always small) raw_logit_score = outputs.logits[:, -1, :].clone() for beam_group_idx in range(num_beam_groups): group_start_idx = beam_group_idx * num_sub_beams group_end_idx = min(group_start_idx + num_sub_beams, num_beams) group_size = group_end_idx - group_start_idx # indices of beams of current group among all sentences in batch batch_group_indices = [] for batch_idx in range(batch_size): batch_group_indices.extend( [batch_idx * num_beams + idx for idx in range(group_start_idx, group_end_idx)] ) group_input_ids = input_ids[batch_group_indices] # select outputs of beams of current group only # No need to clone() the logits here as they will not retain outputs.logits at the end of the loop next_token_logits = outputs.logits[batch_group_indices, -1, :] next_token_scores = nn.functional.log_softmax( next_token_logits, dim=-1 ) # (batch_size * group_size, vocab_size) vocab_size = next_token_scores.shape[-1] next_token_scores_processed = logits_processor( group_input_ids, next_token_scores, current_tokens=current_tokens, beam_group_idx=beam_group_idx ) next_token_scores = next_token_scores_processed + beam_scores[batch_group_indices].unsqueeze(-1) next_token_scores = next_token_scores.expand_as(next_token_scores_processed) if output_scores: processed_score[batch_group_indices] = next_token_scores_processed # reshape for beam search next_token_scores = next_token_scores.view(batch_size, group_size * vocab_size) # Sample 1 + len(eos_token_id) next tokens for each beam so we have at least 1 non eos token per beam. n_eos_tokens = eos_token_id.shape[0] if eos_token_id is not None else 0 next_token_scores, next_tokens = torch.topk( next_token_scores, max(2, 1 + n_eos_tokens) * group_size, dim=1, largest=True, sorted=True ) next_indices = torch.div(next_tokens, vocab_size, rounding_mode="floor") next_tokens = next_tokens % vocab_size # stateless process_beam_indices = sum(beam_indices, ()) if beam_indices is not None else None beam_outputs = beam_scorer.process( group_input_ids, next_token_scores, next_tokens, next_indices, pad_token_id=pad_token_id, eos_token_id=eos_token_id, beam_indices=process_beam_indices, group_index=beam_group_idx, decoder_prompt_len=decoder_prompt_len, ) beam_scores[batch_group_indices] = beam_outputs["next_beam_scores"] beam_next_tokens = beam_outputs["next_beam_tokens"] beam_idx = beam_outputs["next_beam_indices"] if return_dict_in_generate and output_scores: beam_indices[beam_group_idx] = tuple( beam_indices[beam_group_idx][beam_idx[i]] + (beam_idx[i],) for i in range(len(beam_indices[0])) ) input_ids[batch_group_indices] = group_input_ids[beam_idx] group_input_ids = torch.cat([group_input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1) current_tokens[batch_group_indices] = group_input_ids[:, -1] # (beam_idx // group_size) -> batch_idx # (beam_idx % group_size) -> offset of idx inside the group reordering_indices[batch_group_indices] = ( num_beams * torch.div(beam_idx, group_size, rounding_mode="floor") + group_start_idx + (beam_idx % group_size) ) # Store scores, attentions and hidden_states when required if return_dict_in_generate: if output_scores: scores += (processed_score,) if output_logits: raw_logits += (raw_logit_score,) if output_attentions: decoder_attentions += ( (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,) ) if self.config.is_encoder_decoder: cross_attentions += (outputs.cross_attentions,) if output_hidden_states: decoder_hidden_states += ( (outputs.decoder_hidden_states,) if self.config.is_encoder_decoder else (outputs.hidden_states,) ) input_ids = torch.cat([input_ids, current_tokens.unsqueeze(-1)], dim=-1) model_kwargs = self._update_model_kwargs_for_generation( outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder, ) # This is needed to properly delete outputs.logits which may be very large for first iteration # Otherwise a reference to outputs is kept which keeps the logits alive in the next iteration # IMPORTANT: Note that this should appear BEFORE the call to _reorder_cache() to save the maximum memory # (that way the memory peak does not include outputs.logits) del outputs if model_kwargs.get("past_key_values", None) is not None: model_kwargs["past_key_values"] = self._temporary_reorder_cache( model_kwargs["past_key_values"], reordering_indices ) # increase cur_len cur_len = cur_len + 1 if beam_scorer.is_done or all(stopping_criteria(input_ids, scores)): this_peer_finished = True final_beam_indices = sum(beam_indices, ()) if beam_indices is not None else None sequence_outputs = beam_scorer.finalize( input_ids, beam_scores, next_tokens, next_indices, pad_token_id=pad_token_id, eos_token_id=eos_token_id, max_length=stopping_criteria.max_length, beam_indices=final_beam_indices, decoder_prompt_len=decoder_prompt_len, ) if return_dict_in_generate: if not output_scores: sequence_outputs["sequence_scores"] = None if self.config.is_encoder_decoder: return GenerateBeamEncoderDecoderOutput( sequences=sequence_outputs["sequences"], sequences_scores=sequence_outputs["sequence_scores"], scores=scores, logits=raw_logits, beam_indices=sequence_outputs["beam_indices"], encoder_attentions=encoder_attentions, encoder_hidden_states=encoder_hidden_states, decoder_attentions=decoder_attentions, cross_attentions=cross_attentions, decoder_hidden_states=decoder_hidden_states, past_key_values=model_kwargs.get("past_key_values"), ) else: return GenerateBeamDecoderOnlyOutput( sequences=sequence_outputs["sequences"], sequences_scores=sequence_outputs["sequence_scores"], scores=scores, logits=raw_logits, beam_indices=sequence_outputs["beam_indices"], attentions=decoder_attentions, hidden_states=decoder_hidden_states, past_key_values=model_kwargs.get("past_key_values"), ) else: return sequence_outputs["sequences"] def _constrained_beam_search( self, input_ids: torch.LongTensor, constrained_beam_scorer: ConstrainedBeamSearchScorer, logits_processor: LogitsProcessorList, stopping_criteria: StoppingCriteriaList, generation_config: GenerationConfig, synced_gpus: bool, **model_kwargs, ) -> Union[GenerateBeamOutput, torch.LongTensor]: r""" Generates sequences of token ids for models with a language modeling head using **constrained beam search decoding** and can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models. Parameters: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): The sequence used as a prompt for the generation. constrained_beam_scorer (`ConstrainedBeamSearchScorer`): A derived instance of [`BeamScorer`] that defines how beam hypotheses are constructed, stored and sorted during generation, while satisfying a list of positive constraints. For more information, the documentation of [`ConstrainedBeamSearchScorer`] should be read. logits_processor (`LogitsProcessorList`): An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`] used to modify the prediction scores of the language modeling head applied at each generation step. stopping_criteria (`StoppingCriteriaList`): An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`] used to tell if the generation loop should stop. logits_warper (`LogitsProcessorList`): An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsWarper`] used to warp the prediction score distribution of the language modeling head applied before multinomial sampling at each generation step. generation_config ([`~generation.GenerationConfig`]): The generation configuration to be used as parametrization of the decoding method. synced_gpus (`bool`): Whether to continue running the while loop until max_length (needed for ZeRO stage 3) model_kwargs: Additional model specific kwargs will be forwarded to the `forward` function of the model. If model is an encoder-decoder model the kwargs should include `encoder_outputs`. Return: [`~generation.GenerateBeamDecoderOnlyOutput`], [`~generation.GenerateBeamEncoderDecoderOutput`] or `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a [`~generation.GenerateBeamDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and `return_dict_in_generate=True` or a [`~generation.GenerateBeamEncoderDecoderOutput`] if `model.config.is_encoder_decoder=True`. """ # init values pad_token_id = generation_config._pad_token_tensor eos_token_id = generation_config._eos_token_tensor output_attentions = generation_config.output_attentions output_hidden_states = generation_config.output_hidden_states output_scores = generation_config.output_scores output_logits = generation_config.output_logits return_dict_in_generate = generation_config.return_dict_in_generate batch_size = len(constrained_beam_scorer._beam_hyps) num_beams = constrained_beam_scorer.num_beams batch_beam_size, cur_len = input_ids.shape model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs) if num_beams * batch_size != batch_beam_size: raise ValueError( f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}." ) # init attention / hidden states / scores tuples scores = () if (return_dict_in_generate and output_scores) else None raw_logits = () if (return_dict_in_generate and output_logits) else None beam_indices = ( tuple(() for _ in range(batch_beam_size)) if (return_dict_in_generate and output_scores) else None ) decoder_attentions = () if (return_dict_in_generate and output_attentions) else None cross_attentions = () if (return_dict_in_generate and output_attentions) else None decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None # if model is an encoder-decoder, retrieve encoder attention weights and hidden states if return_dict_in_generate and self.config.is_encoder_decoder: encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None encoder_hidden_states = ( model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None ) # initialise score of first beam with 0 and the rest with -1e9. This makes sure that only tokens # of the first beam are considered to avoid sampling the exact same tokens across all beams. beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=input_ids.device) beam_scores[:, 1:] = -1e9 beam_scores = beam_scores.view((batch_size * num_beams,)) this_peer_finished = False decoder_prompt_len = input_ids.shape[-1] # record the prompt length of decoder while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device): model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs) # prepare variable output controls (note: some models won't accept all output controls) model_inputs.update({"output_attentions": output_attentions} if output_attentions else {}) model_inputs.update({"output_hidden_states": output_hidden_states} if output_hidden_states else {}) outputs = self(**model_inputs, return_dict=True) if synced_gpus and this_peer_finished: cur_len = cur_len + 1 continue # don't waste resources running the code we don't need # Clone is needed to avoid keeping a hanging ref to outputs.logits which may be very large for first iteration # (the clone itself is always small) next_token_logits = outputs.logits[:, -1, :].clone() next_token_scores = nn.functional.log_softmax( next_token_logits, dim=-1 ) # (batch_size * num_beams, vocab_size) next_token_scores_processed = logits_processor(input_ids, next_token_scores) next_token_scores = next_token_scores_processed + beam_scores[:, None].expand_as( next_token_scores_processed ) scores_for_all_vocab = next_token_scores.clone() # Store scores, attentions and hidden_states when required if return_dict_in_generate: if output_scores: scores += (next_token_scores,) if output_logits: raw_logits += (next_token_logits,) if output_attentions: decoder_attentions += ( (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,) ) if self.config.is_encoder_decoder: cross_attentions += (outputs.cross_attentions,) if output_hidden_states: decoder_hidden_states += ( (outputs.decoder_hidden_states,) if self.config.is_encoder_decoder else (outputs.hidden_states,) ) # reshape for beam search vocab_size = next_token_scores.shape[-1] next_token_scores = next_token_scores.view(batch_size, num_beams * vocab_size) # Sample 1 + len(eos_token_id) next tokens for each beam so we have at least 1 non eos token per beam. n_eos_tokens = eos_token_id.shape[0] if eos_token_id is not None else 0 next_token_scores, next_tokens = torch.topk( next_token_scores, max(2, 1 + n_eos_tokens) * num_beams, dim=1, largest=True, sorted=True ) next_indices = (next_tokens / vocab_size).long() next_tokens = next_tokens % vocab_size # stateless beam_outputs = constrained_beam_scorer.process( input_ids, next_token_scores, next_tokens, next_indices, scores_for_all_vocab, pad_token_id=pad_token_id, eos_token_id=eos_token_id, beam_indices=beam_indices, decoder_prompt_len=decoder_prompt_len, ) beam_scores = beam_outputs["next_beam_scores"] beam_next_tokens = beam_outputs["next_beam_tokens"] beam_idx = beam_outputs["next_beam_indices"] input_ids = torch.cat([input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1) model_kwargs = self._update_model_kwargs_for_generation( outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder, ) # This is needed to properly delete outputs.logits which may be very large for first iteration # Otherwise a reference to outputs is kept which keeps the logits alive in the next iteration # IMPORTANT: Note that this should appear BEFORE the call to _reorder_cache() to save the maximum memory # (that way the memory peak does not include outputs.logits) del outputs if model_kwargs.get("past_key_values", None) is not None: model_kwargs["past_key_values"] = self._temporary_reorder_cache( model_kwargs["past_key_values"], beam_idx ) if return_dict_in_generate and output_scores: beam_indices = tuple((beam_indices[beam_idx[i]] + (beam_idx[i],) for i in range(len(beam_indices)))) # increase cur_len cur_len = cur_len + 1 if constrained_beam_scorer.is_done or all(stopping_criteria(input_ids, scores)): this_peer_finished = True sequence_outputs = constrained_beam_scorer.finalize( input_ids, beam_scores, next_tokens, next_indices, pad_token_id=pad_token_id, eos_token_id=eos_token_id, max_length=stopping_criteria.max_length, beam_indices=beam_indices, decoder_prompt_len=decoder_prompt_len, ) if return_dict_in_generate: if not output_scores: sequence_outputs["sequence_scores"] = None if self.config.is_encoder_decoder: return GenerateBeamEncoderDecoderOutput( sequences=sequence_outputs["sequences"], sequences_scores=sequence_outputs["sequence_scores"], scores=scores, logits=raw_logits, beam_indices=sequence_outputs["beam_indices"], encoder_attentions=encoder_attentions, encoder_hidden_states=encoder_hidden_states, decoder_attentions=decoder_attentions, cross_attentions=cross_attentions, decoder_hidden_states=decoder_hidden_states, past_key_values=model_kwargs.get("past_key_values"), ) else: return GenerateBeamDecoderOnlyOutput( sequences=sequence_outputs["sequences"], sequences_scores=sequence_outputs["sequence_scores"], scores=scores, logits=raw_logits, beam_indices=sequence_outputs["beam_indices"], attentions=decoder_attentions, hidden_states=decoder_hidden_states, past_key_values=model_kwargs.get("past_key_values"), ) else: return sequence_outputs["sequences"] def _assisted_decoding( self, input_ids: torch.LongTensor, candidate_generator: CandidateGenerator, logits_processor: LogitsProcessorList, logits_warper: LogitsProcessorList, stopping_criteria: StoppingCriteriaList, generation_config: GenerationConfig, synced_gpus: bool, streamer: Optional["BaseStreamer"], **model_kwargs, ) -> Union[GenerateNonBeamOutput, torch.LongTensor]: r""" Generates sequences of token ids for models with a language modeling head using **greedy decoding** or **sample** (depending on `do_sample`), assisted by candidate sequences. Assisted generation is an example of a candidate decoding strategy. Can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models. Parameters: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): The sequence used as a prompt for the generation. candidate_generator (`CandidateGenerator`): A derived instance of [`CandidateGenerator`] that defines how candidate sequences are generated. For more information, the documentation of [`CandidateGenerator`] should be read. logits_processor (`LogitsProcessorList`): An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`] used to modify the prediction scores of the language modeling head applied at each generation step. logits_warper (`LogitsProcessorList`): An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsWarper`] used to warp the prediction score distribution of the language modeling head applied before multinomial sampling at each generation step. Only used if sampling is active. stopping_criteria (`StoppingCriteriaList`): An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`] used to tell if the generation loop should stop. generation_config ([`~generation.GenerationConfig`]): The generation configuration to be used as parametrization of the decoding method. synced_gpus (`bool`): Whether to continue running the while loop until max_length (needed for ZeRO stage 3) streamer (`BaseStreamer`, *optional*): Streamer object that will be used to stream the generated sequences. Generated tokens are passed through `streamer.put(token_ids)` and the streamer is responsible for any further processing. model_kwargs: Additional model specific keyword arguments will be forwarded to the `forward` function of the model. If model is an encoder-decoder model the kwargs should include `encoder_outputs`. Return: [`~generation.GenerateDecoderOnlyOutput`], [`~generation.GenerateEncoderDecoderOutput`] or `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a [`~generation.GenerateDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and `return_dict_in_generate=True` or a [`~generation.GenerateEncoderDecoderOutput`] if `model.config.is_encoder_decoder=True`. """ # init values do_sample = logits_warper is not None output_attentions = generation_config.output_attentions output_hidden_states = generation_config.output_hidden_states output_scores = generation_config.output_scores output_logits = generation_config.output_logits return_dict_in_generate = generation_config.return_dict_in_generate # init attention / hidden states / scores tuples scores = () if (return_dict_in_generate and output_scores) else None raw_logits = () if (return_dict_in_generate and output_logits) else None decoder_attentions = () if (return_dict_in_generate and output_attentions) else None cross_attentions = () if (return_dict_in_generate and output_attentions) else None decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None # if model is an encoder-decoder, retrieve encoder attention weights and hidden states if return_dict_in_generate and self.config.is_encoder_decoder: encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None encoder_hidden_states = ( model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None ) # keep track of which sequences are already finished batch_size = input_ids.shape[0] unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device) model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs) # This is needed if return_dict_in_generate is True start_from_empty_dynamic_cache = False past_key_values = model_kwargs.get("past_key_values", None) if isinstance(past_key_values, DynamicCache) or ( isinstance(past_key_values, EncoderDecoderCache) and isinstance(past_key_values.self_attention_cache, DynamicCache) ): if len(past_key_values) == 0: start_from_empty_dynamic_cache = True this_peer_finished = False while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device): cur_len = input_ids.shape[-1] # 1. Fetch candidate sequences from a `CandidateGenerator` candidate_input_ids, candidate_logits = candidate_generator.get_candidates(input_ids) if candidate_logits is not None: candidate_logits = candidate_logits.to(self.device) candidate_length = candidate_input_ids.shape[1] - input_ids.shape[1] is_done_candidate = stopping_criteria(candidate_input_ids, None) # 2. Use the original model to obtain the next token logits given the candidate sequence. We obtain # `candidate_length + 1` relevant logits from this process: in the event that all candidates are correct, # we use this forward pass to also pick the subsequent logits in the original model. # 2.1. Prepare the model inputs candidate_kwargs = copy.copy(model_kwargs) candidate_kwargs = _prepare_attention_mask( candidate_kwargs, candidate_input_ids.shape[1], self.config.is_encoder_decoder ) candidate_kwargs = _prepare_token_type_ids(candidate_kwargs, candidate_input_ids.shape[1]) if "cache_position" in candidate_kwargs: candidate_kwargs["cache_position"] = torch.cat( ( candidate_kwargs["cache_position"], torch.arange(cur_len, cur_len + candidate_length, device=input_ids.device, dtype=torch.long), ), dim=0, ) model_inputs = self.prepare_inputs_for_generation(candidate_input_ids, **candidate_kwargs) if "num_logits_to_keep" in model_inputs: model_inputs["num_logits_to_keep"] = candidate_length + 1 # 2.2. Run a forward pass on the candidate sequence # prepare variable output controls (note: some models won't accept all output controls) model_inputs.update({"output_attentions": output_attentions} if output_attentions else {}) model_inputs.update({"output_hidden_states": output_hidden_states} if output_hidden_states else {}) outputs = self(**model_inputs) # 2.3. Process the new logits new_logits = outputs.logits[:, -candidate_length - 1 :] # excludes the input prompt if present next_token_logits = new_logits.clone() if len(logits_processor) > 0: for i in range(candidate_length + 1): new_logits[:, i, :] = logits_processor(candidate_input_ids[:, : cur_len + i], new_logits[:, i, :]) if do_sample and len(logits_warper) > 0: for i in range(candidate_length + 1): new_logits[:, i, :] = logits_warper(candidate_input_ids[:, : cur_len + i], new_logits[:, i, :]) # 3. Select the accepted tokens. There are two possible cases: # Case 1: `do_sample=True` and we have logits for the candidates (originally from speculative decoding) # 👉 Apply algorithm 1 from the speculative decoding paper (https://arxiv.org/pdf/2211.17192.pdf). if do_sample and candidate_logits is not None: valid_tokens, n_matches = _speculative_sampling( candidate_input_ids, candidate_logits, candidate_length, new_logits, is_done_candidate, ) # Case 2: all other cases (originally from assisted generation) 👉 Compare the tokens selected from the # original model logits with the candidate tokens. We can keep the candidate tokens until the first # mismatch, or until the max length is reached. else: if do_sample: probs = new_logits.softmax(dim=-1) selected_tokens = torch.multinomial(probs[0, :, :], num_samples=1).squeeze(1)[None, :] else: selected_tokens = new_logits.argmax(dim=-1) candidate_new_tokens = candidate_input_ids[:, cur_len:] n_matches = ((~(candidate_new_tokens == selected_tokens[:, :-1])).cumsum(dim=-1) < 1).sum() # Ensure we don't generate beyond max_len or an EOS token if is_done_candidate and n_matches == candidate_length: n_matches -= 1 valid_tokens = selected_tokens[:, : n_matches + 1] # 4. Update variables according to the number of matching assistant tokens. Remember: the token generated # by the model after the last candidate match is also valid, as it is generated from a correct sequence. # Because of this last token, assisted generation search reduces to a normal greedy search/sample if there # is no match. # 4.1. Get the valid continuation, after the matching tokens input_ids = torch.cat((input_ids, valid_tokens), dim=-1) if streamer is not None: streamer.put(valid_tokens.cpu()) new_cur_len = input_ids.shape[-1] # 4.2. Discard past key values relative to unused assistant tokens new_cache_size = new_cur_len - 1 outputs.past_key_values = _crop_past_key_values(self, outputs.past_key_values, new_cache_size) # 5. Update the candidate generation strategy if needed candidate_generator.update_candidate_strategy(input_ids, new_logits, n_matches) if synced_gpus and this_peer_finished: continue # don't waste resources running the code we don't need # Store scores, attentions and hidden_states when required # Assistant: modified to append one tuple element per token, as in the other generation methods. if return_dict_in_generate: if output_scores: scores += tuple(new_logits[:, i, :] for i in range(n_matches + 1)) if output_logits: raw_logits += (next_token_logits,) if "past_key_values" not in model_kwargs or start_from_empty_dynamic_cache: added_len = new_cur_len # set it to false for other iterations start_from_empty_dynamic_cache = False else: added_len = n_matches + 1 if output_attentions: if self.config.is_encoder_decoder: cross_attentions = _split_model_outputs( cross_attentions, outputs.cross_attentions, cur_len, added_len ) decoder_attentions = _split_model_outputs( decoder_attentions, outputs.decoder_attentions, cur_len, added_len, is_decoder_attention=True, ) else: decoder_attentions = _split_model_outputs( decoder_attentions, outputs.attentions, cur_len, added_len, is_decoder_attention=True, ) if output_hidden_states: if self.config.is_encoder_decoder: decoder_hidden_states = _split_model_outputs( decoder_hidden_states, outputs.decoder_hidden_states, cur_len, added_len ) else: decoder_hidden_states = _split_model_outputs( decoder_hidden_states, outputs.hidden_states, cur_len, added_len ) model_kwargs = self._update_model_kwargs_for_generation( outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder, num_new_tokens=n_matches + 1, ) unfinished_sequences = unfinished_sequences & ~stopping_criteria(input_ids, scores) this_peer_finished = unfinished_sequences.max() == 0 if streamer is not None: streamer.end() if ( hasattr(candidate_generator, "assistant_model") and candidate_generator.assistant_model.generation_config.num_assistant_tokens_schedule == "heuristic" ): candidate_generator.assistant_model.generation_config.num_assistant_tokens = ( candidate_generator.num_assistant_tokens ) if return_dict_in_generate: if self.config.is_encoder_decoder: return GenerateEncoderDecoderOutput( sequences=input_ids, scores=scores, logits=raw_logits, encoder_attentions=encoder_attentions, encoder_hidden_states=encoder_hidden_states, decoder_attentions=decoder_attentions, cross_attentions=cross_attentions, decoder_hidden_states=decoder_hidden_states, past_key_values=model_kwargs.get("past_key_values"), ) else: return GenerateDecoderOnlyOutput( sequences=input_ids, scores=scores, logits=raw_logits, attentions=decoder_attentions, hidden_states=decoder_hidden_states, past_key_values=model_kwargs.get("past_key_values"), ) else: return input_ids def _speculative_sampling( candidate_input_ids, candidate_logits, candidate_length, new_logits, is_done_candidate, ): """ Applies sampling as in the speculative decoding paper (https://arxiv.org/pdf/2211.17192.pdf, algorithm 1). Returns the selected tokens, as well as the number of candidate matches. NOTE: Unless otherwise stated, the variable names match those in the paper. """ new_candidate_input_ids = candidate_input_ids[:, -candidate_length:] # Gets the probabilities from the logits. q_i and p_i denote the assistant and model probabilities of the tokens # selected by the assistant, respectively. q = candidate_logits.softmax(dim=-1) q_i = q[:, torch.arange(candidate_length), new_candidate_input_ids].squeeze(0, 1) p = new_logits.softmax(dim=-1) p_i = p[:, torch.arange(candidate_length), new_candidate_input_ids].squeeze(0, 1) probability_ratio = p_i / q_i # When probability_ratio > 1 (i.e. q_i(x) < p_i(x), or "assistant probability of the candidate token is smaller # than the model probability for the same token"), keep the token. Otherwise reject with p = 1 - probability_ratio # (= keep with p = probability_ratio). Keep all the tokens until the first rejection r_i = torch.rand_like(probability_ratio) is_accepted = r_i <= probability_ratio n_matches = ((~is_accepted).cumsum(dim=-1) < 1).sum() # this is `n` in algorithm 1 # Ensure we don't generate beyond max_len or an EOS token (not in algorithm 1, but needed for correct behavior) if is_done_candidate and n_matches == candidate_length: # Output length is assumed to be `n_matches + 1`. Since we won't generate another token with the target model # due to acceptance on EOS we fix `n_matches` n_matches -= 1 valid_tokens = new_candidate_input_ids[:, : n_matches + 1] else: # Next token selection: if there is a rejection, adjust the distribution from the main model before sampling. gamma = candidate_logits.shape[1] p_n_plus_1 = p[:, n_matches, :] if n_matches < gamma: q_n_plus_1 = q[:, n_matches, :] p_prime = torch.clamp((p_n_plus_1 - q_n_plus_1), min=0) p_prime.div_(p_prime.sum()) else: p_prime = p_n_plus_1 t = torch.multinomial(p_prime, num_samples=1).squeeze(1)[None, :] # The selected tokens include the matches (if any) plus the next sampled tokens if n_matches > 0: valid_tokens = torch.cat((new_candidate_input_ids[:, :n_matches], t), dim=-1) else: valid_tokens = t return valid_tokens, n_matches def _split_model_outputs(outputs, new_outputs, cur_len, added_len, is_decoder_attention=False): """ Given the (decoder/cross attentions)/(decoder hidden states) for multiple generated tokens, splits it into a tuple where each member corresponds to a single generated token. """ # Retrocompatibility: in our generation functions, the first iteration includes the attention/hidden states for the # prompt. if len(outputs) == 0: new_tuple = () for layer in new_outputs: last_dim_size = cur_len if is_decoder_attention else layer.shape[-1] new_tuple += (layer[..., :cur_len, :last_dim_size],) outputs += (new_tuple,) # The first iteration contains the prompt + 1 generated token, let's update the length variables accordingly cur_len += 1 added_len -= cur_len for i in range(added_len): new_tuple = () for layer in new_outputs: last_dim_size = cur_len + i if is_decoder_attention else layer.shape[-1] new_tuple += (layer[..., i : i + 1, :last_dim_size],) outputs += (new_tuple,) return outputs def _ranking_fast( context_hidden: torch.FloatTensor, next_hidden: torch.FloatTensor, next_top_k_probs: torch.FloatTensor, alpha: float, beam_width: int, ) -> torch.FloatTensor: """ Reranks the top_k candidates based on a degeneration penalty (cosine similarity with previous tokens), as described in the paper "A Contrastive Framework for Neural Text Generation". Returns the index of the best candidate for each row in the batch. """ norm_context_hidden = context_hidden / context_hidden.norm(dim=2, keepdim=True) norm_next_hidden = next_hidden / next_hidden.norm(dim=2, keepdim=True) cosine_matrix = torch.matmul(norm_context_hidden, norm_next_hidden.transpose(1, 2)).squeeze(-1) # [B*K, S] degeneration_penalty, _ = torch.max(cosine_matrix, dim=-1) # [B*K] next_top_k_probs = next_top_k_probs.view(-1) # [B*K] contrastive_score = (1.0 - alpha) * next_top_k_probs - alpha * degeneration_penalty contrastive_score = torch.stack(torch.split(contrastive_score, beam_width)) # [B, K] _, selected_idx = contrastive_score.max(dim=-1) # [B] return selected_idx def _split(data, full_batch_size: int, split_size: int = None): """ Takes care of three cases: 1. data is a tensor: e.g. last_hidden_state, pooler_output etc. split them on the batch_size dim 2. data is a tuple: e.g. hidden_states, attentions etc. Keep the tuple as it is and split each tensor in it and return a list of tuples 3. data is a tuple of tuples, e.g. past_key_values. Keep the tuple as it is and split each tuple in it and return a list of tuples of tuples (see documentation of ModelOutput) """ if data is None: return [None] * (full_batch_size // split_size) if isinstance(data, torch.Tensor): return [data[i : i + split_size] for i in range(0, full_batch_size, split_size)] # New cache format elif isinstance(data, DynamicCache) or ( isinstance(data, EncoderDecoderCache) and isinstance(data.self_attention_cache, DynamicCache) ): return data.batch_split(full_batch_size, split_size) elif isinstance(data, tuple): # If the elements of the tuple are also tuples (e.g., past_key_values in our earlier example) if isinstance(data[0], tuple): return [ tuple(tuple(tensor[i : i + split_size] for tensor in inner_tuple) for inner_tuple in data) for i in range(0, full_batch_size, split_size) ] else: return [ tuple(sub_tensor[i : i + split_size] for sub_tensor in data) for i in range(0, full_batch_size, split_size) ] else: raise TypeError(f"Unexpected attribute type: {type(data)}") def _split_model_inputs( model_input: Union[ModelOutput, Dict], split_size: int, full_batch_size: int ) -> List[Union[ModelOutput, Dict]]: """ Split a ModelOutput object (or its subclasses) or Dict into a list of same-class objects based on a specified split size. The input object is dict when it was prepared for forward pass and ModelOutput when it was returned from previous forward pass. """ # Edge case: if model_input is None, return a list of Nones # this happens with Whisper where encoder_outputs is None if model_input is None: return [model_input] * (full_batch_size // split_size) # Infer the class from the object model_output_cls = type(model_input) if (full_batch_size % split_size) != 0: raise ValueError("`full_batch_size` must be divisible by `split_size`") if split_size > full_batch_size: raise ValueError("`split_size` must be smaller or equal to `full_batch_size`") # Helper function to split tensors or tuples of tensors # Find all the dataclass fields (e.g., last_hidden_state, pooler_output etc.) and split them keys = ( model_input.__dataclass_fields__.keys() if hasattr(model_input, "__dataclass_fields__") else model_input.keys() ) # We only keep keys that are in the model_input keys = [k for k in keys if k in model_input] # Here we can have four types of values: tensors, tuples of tensors and booleans, and encoder_outputs which is a # ModelOutput object. # bool should not be split but replicated for each split bool_keys = [k for k in keys if isinstance(model_input[k], bool) or k == "cache_position"] keys_to_ignore = ["cache_position", "encoder_outputs", "num_logits_to_keep"] non_bool_keys = [k for k in keys if not isinstance(model_input[k], bool) and k not in keys_to_ignore] # we split the tensors and tuples of tensors data_split_list = [ {k: _split(model_input[k], full_batch_size, split_size)[i] for k in non_bool_keys} for i in range(full_batch_size // split_size) ] # bool values are the same and replicated for each split bool_data = {k: model_input[k] for k in bool_keys} # encoder_outputs is a ModelOutput object and should be split by its own if "encoder_outputs" in model_input: encoder_outputs_split = _split_model_inputs(model_input["encoder_outputs"], split_size, full_batch_size) data_split_list = [ {**data_split, "encoder_outputs": encoder_outputs_split[i]} for i, data_split in enumerate(data_split_list) ] # num_logits_to_keep should be replicated for each split, similar to bool values if "num_logits_to_keep" in model_input: data_split_list = [ {**data_split, "num_logits_to_keep": model_input["num_logits_to_keep"]} for data_split in data_split_list ] # Convert each dictionary in the list to an object of the inferred class split_model_inputs: List[Union[ModelOutput, Dict]] = [ model_output_cls(**data_split, **bool_data) for data_split in data_split_list ] return split_model_inputs def stack_model_outputs(model_outputs: List[ModelOutput]) -> ModelOutput: """ Stack a list of ModelOutput objects (or its subclasses) along the batch_size dimension. The function infers the specific ModelOutput subclass from the list provided. """ if not model_outputs: raise ValueError("Input list is empty.") # Infer the class from the first object in the list model_output_cls = type(model_outputs[0]) # Ensure all objects are of the same type if not all(isinstance(obj, model_output_cls) for obj in model_outputs): raise ValueError("All elements in the list should be of the same type.") # Helper function to concat tensors or tuples of tensors def _concat(data): """ Reverse of `_split` function above. """ if any(data is None for data in data): return None if isinstance(data[0], torch.Tensor): return torch.cat(data, dim=0) # New cache format elif isinstance(data[0], DynamicCache): return DynamicCache.from_batch_splits(data) elif isinstance(data[0], EncoderDecoderCache): return EncoderDecoderCache.from_batch_splits(data) elif isinstance(data[0], tuple): # If the elements of the tuple are also tuples (e.g., past_key_values in our earlier example) if isinstance(data[0][0], tuple): return tuple( tuple(torch.cat([attr[i][j] for attr in data], dim=0) for j in range(len(data[0][0]))) for i in range(len(data[0])) ) else: return tuple(torch.cat([attr[i] for attr in data], dim=0) for i in range(len(data[0]))) elif isinstance(data[0], (int, float)): # If the elements are integers or floats, return a tensor return torch.tensor(data) else: raise TypeError(f"Unexpected attribute type: {type(data[0])}") # Use a dictionary comprehension to gather attributes from all objects and concatenate them concatenated_data = { k: _concat([getattr(model_output, k) for model_output in model_outputs]) for k in model_output_cls.__dataclass_fields__.keys() } # Return a new object of the inferred class with the concatenated attributes return model_output_cls(**concatenated_data) def _relative_top_filter( scores: torch.FloatTensor, baseline_scores: torch.FloatTensor, relative_top: float = 0.1, filter_value: float = -float("Inf"), base_filter_value=-1e-3, min_tokens_to_keep: int = 1, ) -> torch.FloatTensor: """ Reference: https://github.com/XiangLi1999/ContrastiveDecoding/blob/170e9142e92159c1237d731e240f5eb14aabf428/transformers/src/transformers/generation_logits_process.py#L235 Apply filtering to only keep tokens with a probability above a certain threshold. The threshold is defined as `relative_top` * max probability in the distribution. """ scores_normalized = scores.log_softmax(dim=-1) baseline_scores_normalized = baseline_scores.log_softmax(dim=-1) sorted_logits, sorted_indices = torch.sort(scores_normalized, descending=True) min_thresh = sorted_logits[..., min_tokens_to_keep - 1] probs_max = torch.max(scores_normalized, dim=-1).values probs_thresh = probs_max + np.log(relative_top) probs_thresh = torch.min(min_thresh, probs_thresh) probs_thresh = probs_thresh.unsqueeze(-1) baseline_scores_normalized[scores_normalized < probs_thresh] = base_filter_value scores_normalized[scores_normalized < probs_thresh] = filter_value return scores_normalized, baseline_scores_normalized def _dola_select_contrast( candidate_premature_layers: List[int], candidate_premature_logits: Dict[int, torch.FloatTensor], final_logits: torch.FloatTensor, ) -> torch.FloatTensor: if len(candidate_premature_layers) == 1: base_logits = candidate_premature_logits[candidate_premature_layers[0]] final_logits, base_logits = _relative_top_filter(final_logits, base_logits) logits = final_logits - base_logits return logits # 1. Stacking all premature_layers into a new dimension stacked_premature_layers = torch.stack([candidate_premature_logits[i] for i in candidate_premature_layers], dim=0) # 2. Calculate the softmax values for mature_layer and all premature_layers # shape: (batch_size, vocab_size) softmax_mature_layer = F.softmax(final_logits, dim=-1) # shape: (num_premature_layers, batch_size, vocab_size) softmax_premature_layers = F.softmax(stacked_premature_layers, dim=-1) # 3. Calculate the average distribution # shape: (num_premature_layers, batch_size, vocab_size) avg_dist = 0.5 * (softmax_mature_layer[None, :, :] + softmax_premature_layers) # 4. Calculate log-softmax for the KL divergence # shape: (batch_size, vocab_size) log_softmax_mature_layer = F.log_softmax(final_logits, dim=-1) # shape: (num_premature_layers, batch_size, vocab_size) log_softmax_premature_layers = F.log_softmax(stacked_premature_layers, dim=-1) # 5. Calculate the KL divergences and then the JS divergences # shape: (num_premature_layers, batch_size) kl1 = F.kl_div(log_softmax_mature_layer[None, :, :], avg_dist, reduction="none").mean(-1) # shape: (num_premature_layers, batch_size) kl2 = F.kl_div(log_softmax_premature_layers, avg_dist, reduction="none").mean(-1) js_divs = 0.5 * (kl1 + kl2) # shape: (num_premature_layers, batch_size) # 6. Reduce the batchmean js_divs = js_divs.mean(-1) # shape: (num_premature_layers,) premature_layer = candidate_premature_layers[int(js_divs.argmax().cpu().item())] base_logits = candidate_premature_logits[premature_layer] final_logits, base_logits = _relative_top_filter(final_logits, base_logits) logits = final_logits - base_logits return logits