{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f4919e091c0>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681768572677626655, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAKPr9z/c4gG/qcwLP217Xr8y3Oi/+yTRPRugX7wvtxY/ybguP1zYlT/Natg/8l4+v8ybAkCYYyK+DJgawCEzcT6FlJ8/d7vOvEWxG8B33W2+WoQ2v9QMrD0/j9M/wIpXPsAHaz9wwws/K773Pv8qTT9QGP4+NCQGwIjAO7/C6tu+EzxVv2lFcb5Ahpy/FpeVPx8AGT9CGcG+z+Q4v+sv0D2mXUS+ClD6v5j7Y73MJ2q/m9oWv36aCr/wExPAby9YPn1FBEAzSns/vA42v9wWFMDAB2s/C3Tqvyu+9z6Ktp+/TV5fP5r2Dj9RTZU+0PLrP/gQxz/V5qg/OKaAv2etvL4O9zm/ffi7PuqyLz+ZeoQ/MJzRPq4LOr9uORQ/FLnXv+N3Jj5CpaO/e0KSv0gF4T8sIbC+mvmRP3VcJz/u6GTAwAdrPwt06r8rvvc+irafv/Q6xT2EFY++TKkOP9vBND/nUb4/1jUTv1FQ9L0Bv4C/O1qGPgZPsz/cMEw/jrICP5ZZQT4igZo9emBCP290jD33GIo/TFoevoj0ajws2Ho/494Ev2iQaT+sJ3Q+sEz/v5tri79wwws/K773Poq2n7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACKQss2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA6t/xvQAAAABNG/+/AAAAAJR7Qz0AAAAAuxfwPwAAAADNtYs9AAAAAIKB+j8AAAAAUmkUvQAAAAAbcP+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPDZYNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLoKp70AAAAAWdf0vwAAAACwXFG9AAAAAAjA3j8AAAAABvGTOwAAAADnhOo/AAAAAARO5L0AAAAAePvcvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMP4gLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAks5k9AAAAAAoE3r8AAAAASIwLPgAAAACkhfg/AAAAAHLgxL0AAAAA79zrPwAAAAD0sAw+AAAAALhl/r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGaR+2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAiR+RvQAAAAA5KgHAAAAAAI2tlLwAAAAAlLrzPwAAAACZJUy9AAAAAIiq8T8AAAAANGrdPQAAAAB+HuG/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIZA19a2WpuMAWyUTegDjAF0lEdAsL76cawUxnV9lChoBkdAkVXdxZMcqGgHTegDaAhHQLDBTyOq//N1fZQoaAZHQJcuqwMYuTRoB03oA2gIR0Cww5uDSPU8dX2UKGgGR0CW4OOzY287aAdN6ANoCEdAsMPLfixVyXV9lChoBkdAluBeaF23a2gHTegDaAhHQLDG7GxUvPF1fZQoaAZHQJVifGgi/wloB03oA2gIR0CwyT/5P/JedX2UKGgGR0CM6JQemvW6aAdN6ANoCEdAsMsXfCQ9zXV9lChoBkdAlWwT1oQFtGgHTegDaAhHQLDLOspobn51fZQoaAZHQJV0aGUOd5JoB03oA2gIR0CwzTY55qubdX2UKGgGR0CX9/0WuX/paAdN6ANoCEdAsM9qnwXqJXV9lChoBkdAmiLDIJZ4fWgHTegDaAhHQLDRM3pwCKd1fZQoaAZHQJTLZjRUm2NoB03oA2gIR0Cw0WT0UXYUdX2UKGgGR0CVfQomXw9aaAdN6ANoCEdAsNRNk+X7cnV9lChoBkdAlU1WYnfEXWgHTegDaAhHQLDXOyVObiJ1fZQoaAZHQJNO7tjTa0xoB03oA2gIR0Cw2Q/Ue+23dX2UKGgGR0CS+kkupS75aAdN6ANoCEdAsNkxL7Gec3V9lChoBkdAll1XSWqtHWgHTegDaAhHQLDbL8E3bVV1fZQoaAZHQJpoWhQFcIJoB03oA2gIR0Cw3WM9jgAIdX2UKGgGR0CZFeETxoZiaAdN6ANoCEdAsN8knWrfcnV9lChoBkdAmlyJQUHpr2gHTegDaAhHQLDfRrS3LFJ1fZQoaAZHQJnGFzEJjUdoB03oA2gIR0Cw4b1vMr3CdX2UKGgGR0CZbIK6FuejaAdN6ANoCEdAsOUisySFG3V9lChoBkdAl3SZZOi35WgHTegDaAhHQLDm4IUrTYx1fZQoaAZHQJxClvm5lOJoB03oA2gIR0Cw5wF/6O5sdX2UKGgGR0Cc12KsuFpPaAdN6ANoCEdAsOj8NjLB9HV9lChoBkdAmYVYE4ecQWgHTegDaAhHQLDrO3MINVl1fZQoaAZHQJ4lQpDu0C1oB03oA2gIR0Cw7QzIeYD1dX2UKGgGR0CdH8aIeo1laAdN6ANoCEdAsO0sf4h2XHV9lChoBkdAmanSpBHCoGgHTegDaAhHQLDvP/WlMyt1fZQoaAZHQJl0jgtOEdxoB03oA2gIR0Cw8qwdCE6DdX2UKGgGR0CUfusEaESNaAdN6ANoCEdAsPUR8c+7lXV9lChoBkdAlh62ldkauWgHTegDaAhHQLD1NX9itq51fZQoaAZHQJn8g5eZ5RloB03oA2gIR0Cw9z70OEuhdX2UKGgGR0CYoggAIY3vaAdN6ANoCEdAsPmPyI55q3V9lChoBkdAmitsUh3aBmgHTegDaAhHQLD7W4qgAZN1fZQoaAZHQJwMUTzundhoB03oA2gIR0Cw+3wP3BYWdX2UKGgGR0CZJdqIacZtaAdN6ANoCEdAsP2H5VOsT3V9lChoBkdAnFmpsbedkWgHTegDaAhHQLEAggJkXk51fZQoaAZHQJjPnjQzDXRoB03oA2gIR0CxA05hBqsVdX2UKGgGR0CbUMIS13MZaAdN6ANoCEdAsQN5W0Z3tHV9lChoBkdAlxgSon8baWgHTegDaAhHQLEFe8+Royt1fZQoaAZHQJkGF1klNURoB03oA2gIR0CxB8YKlYU4dX2UKGgGR0CYy6uRcNYsaAdN6ANoCEdAsQmPIuGsWHV9lChoBkdAluoKo/A0sWgHTegDaAhHQLEJtmyxA0N1fZQoaAZHQJvy/6dlNDdoB03oA2gIR0CxC73zYmLMdX2UKGgGR0CZm8gH/tIDaAdN6ANoCEdAsQ45PGhmG3V9lChoBkdAmpOsuanaWWgHTegDaAhHQLEQ2paiblR1fZQoaAZHQJ6yk/wAlv9oB03oA2gIR0CxEQ24Vh1DdX2UKGgGR0CekePOY6XCaAdN6ANoCEdAsROJOtW+5HV9lChoBkdAnWmKlYU342gHTegDaAhHQLEVxCPZIxx1fZQoaAZHQJle0zdk8RtoB03oA2gIR0CxF4VZX+2mdX2UKGgGR0CY8HD0UXYUaAdN6ANoCEdAsRektK7I1nV9lChoBkdAmPTrxEv0y2gHTegDaAhHQLEZmjUNKAd1fZQoaAZHQJrg42606YFoB03oA2gIR0CxG9BaX8fndX2UKGgGR0CdWh5tFa0QaAdN6ANoCEdAsR4WEM9bHXV9lChoBkdAmeChEjPfK2gHTegDaAhHQLEeR+fh/Al1fZQoaAZHQJjSaJ2t+1BoB03oA2gIR0CxIWMJdB0IdX2UKGgGR0CSrLnZ00WNaAdN6ANoCEdAsSO3MMZxaXV9lChoBkdAnGqH/tICl2gHTegDaAhHQLElhaews5J1fZQoaAZHQJyf49q1w5xoB03oA2gIR0CxJaYE4ecQdX2UKGgGR0CbPP8cMmWuaAdN6ANoCEdAsSeaxTsIFHV9lChoBkdAnZWN4VymymgHTegDaAhHQLEp4QBxPwd1fZQoaAZHQJko6n2qT8poB03oA2gIR0CxK6qu8scydX2UKGgGR0CfEsmShakiaAdN6ANoCEdAsSvaGwiaAnV9lChoBkdAnVoXQ6ZH/mgHTegDaAhHQLEuw/bj94x1fZQoaAZHQJxv7H7xd6doB03oA2gIR0CxMblQEZBLdX2UKGgGR0CfDbSSNfgKaAdN6ANoCEdAsTOJB2OhkHV9lChoBkdAnhxt5Qgs9WgHTegDaAhHQLEzr5WBBiV1fZQoaAZHQJvhkFW4mTloB03oA2gIR0CxNbrL6k6+dX2UKGgGR0CcFbnDR+jNaAdN6ANoCEdAsTf6z/p+t3V9lChoBkdAm7FFS4vvjWgHTegDaAhHQLE5wkpI+W51fZQoaAZHQJoqkm2LHdZoB03oA2gIR0CxOeSbtqpMdX2UKGgGR0CbS0jfek57aAdN6ANoCEdAsTxvVRUFS3V9lChoBkdAmyfck6cRUWgHTegDaAhHQLE/3wFkhA51fZQoaAZHQJnYozyjHn5oB03oA2gIR0CxQaL0e2d/dX2UKGgGR0CUlRU8mrsCaAdN6ANoCEdAsUHCDlHSW3V9lChoBkdAmyxxoh6jWWgHTegDaAhHQLFDtxbSqlx1fZQoaAZHQJ55h9tuUEBoB03oA2gIR0CxRfEiD/VBdX2UKGgGR0CcrB7HhjvvaAdN6ANoCEdAsUe6wY+B6XV9lChoBkdAnh09xEORT2gHTegDaAhHQLFH28YAKfF1fZQoaAZHQJyEckY4yXVoB03oA2gIR0CxSeHb7CSBdX2UKGgGR0Cc9yqNZNfxaAdN6ANoCEdAsU0nlOoHcHV9lChoBkdAmFXbS3LFGWgHTegDaAhHQLFPinZ00WN1fZQoaAZHQJlqCb+cYqJoB03oA2gIR0CxT6rOeJ53dX2UKGgGR0CY2FFdLQHBaAdN6ANoCEdAsVGsxM36ynV9lChoBkdAmw7qZML4OGgHTegDaAhHQLFT5ZeAuqZ1fZQoaAZHQJmWbuNPxhFoB03oA2gIR0CxVaMJdB0IdX2UKGgGR0CbCMqC6H0saAdN6ANoCEdAsVXDozN2T3V9lChoBkdAmHksolUp/mgHTegDaAhHQLFXuwgTyrh1fZQoaAZHQJ6GXxwyZa5oB03oA2gIR0CxWnOwTufFdX2UKGgGR0CdqYrBTGYKaAdN6ANoCEdAsV0x3HJcPnV9lChoBkdAnsqYjjaPCGgHTegDaAhHQLFdY1wo9cN1fZQoaAZHQJ1FgFqzqr1oB03oA2gIR0CxX5YXoC+2dX2UKGgGR0Ce8nZF5OafaAdN6ANoCEdAsWHTAwfyPXV9lChoBkdAnegCA+Y+jmgHTegDaAhHQLFjlToMa0h1fZQoaAZHQJV70W3z+WJoB03oA2gIR0CxY7gDvE0jdX2UKGgGR0CZoLEtNBWxaAdN6ANoCEdAsWWvOqvNeXV9lChoBkdAlOlvTgEU02gHTegDaAhHQLFn43Lmp2l1fZQoaAZHQJyIBsKsuFpoB03oA2gIR0CxaoHgYP5IdX2UKGgGR0CecRgieNDMaAdN6ANoCEdAsWqz531SO3VlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}