Image Segmentation
Transformers
PyTorch
upernet
Inference Endpoints
File size: 1,110 Bytes
b13b124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# model settings
norm_cfg = dict(type='SyncBN', eps=1e-03, requires_grad=True)
model = dict(
    type='EncoderDecoder',
    backbone=dict(
        type='CGNet',
        norm_cfg=norm_cfg,
        in_channels=3,
        num_channels=(32, 64, 128),
        num_blocks=(3, 21),
        dilations=(2, 4),
        reductions=(8, 16)),
    decode_head=dict(
        type='FCNHead',
        in_channels=256,
        in_index=2,
        channels=256,
        num_convs=0,
        concat_input=False,
        dropout_ratio=0,
        num_classes=19,
        norm_cfg=norm_cfg,
        loss_decode=dict(
            type='CrossEntropyLoss',
            use_sigmoid=False,
            loss_weight=1.0,
            class_weight=[
                2.5959933, 6.7415504, 3.5354059, 9.8663225, 9.690899, 9.369352,
                10.289121, 9.953208, 4.3097677, 9.490387, 7.674431, 9.396905,
                10.347791, 6.3927646, 10.226669, 10.241062, 10.280587,
                10.396974, 10.055647
            ])),
    # model training and testing settings
    train_cfg=dict(sampler=None),
    test_cfg=dict(mode='whole'))