Image Segmentation
Transformers
PyTorch
upernet
Inference Endpoints
File size: 5,692 Bytes
b13b124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import numpy as np

from mmseg.core.evaluation import eval_metrics, mean_dice, mean_iou


def get_confusion_matrix(pred_label, label, num_classes, ignore_index):
    """Intersection over Union
       Args:
           pred_label (np.ndarray): 2D predict map
           label (np.ndarray): label 2D label map
           num_classes (int): number of categories
           ignore_index (int): index ignore in evaluation
       """

    mask = (label != ignore_index)
    pred_label = pred_label[mask]
    label = label[mask]

    n = num_classes
    inds = n * label + pred_label

    mat = np.bincount(inds, minlength=n**2).reshape(n, n)

    return mat


# This func is deprecated since it's not memory efficient
def legacy_mean_iou(results, gt_seg_maps, num_classes, ignore_index):
    num_imgs = len(results)
    assert len(gt_seg_maps) == num_imgs
    total_mat = np.zeros((num_classes, num_classes), dtype=np.float)
    for i in range(num_imgs):
        mat = get_confusion_matrix(
            results[i], gt_seg_maps[i], num_classes, ignore_index=ignore_index)
        total_mat += mat
    all_acc = np.diag(total_mat).sum() / total_mat.sum()
    acc = np.diag(total_mat) / total_mat.sum(axis=1)
    iou = np.diag(total_mat) / (
        total_mat.sum(axis=1) + total_mat.sum(axis=0) - np.diag(total_mat))

    return all_acc, acc, iou


# This func is deprecated since it's not memory efficient
def legacy_mean_dice(results, gt_seg_maps, num_classes, ignore_index):
    num_imgs = len(results)
    assert len(gt_seg_maps) == num_imgs
    total_mat = np.zeros((num_classes, num_classes), dtype=np.float)
    for i in range(num_imgs):
        mat = get_confusion_matrix(
            results[i], gt_seg_maps[i], num_classes, ignore_index=ignore_index)
        total_mat += mat
    all_acc = np.diag(total_mat).sum() / total_mat.sum()
    acc = np.diag(total_mat) / total_mat.sum(axis=1)
    dice = 2 * np.diag(total_mat) / (
        total_mat.sum(axis=1) + total_mat.sum(axis=0))

    return all_acc, acc, dice


def test_metrics():
    pred_size = (10, 30, 30)
    num_classes = 19
    ignore_index = 255
    results = np.random.randint(0, num_classes, size=pred_size)
    label = np.random.randint(0, num_classes, size=pred_size)
    label[:, 2, 5:10] = ignore_index
    all_acc, acc, iou = eval_metrics(
        results, label, num_classes, ignore_index, metrics='mIoU')
    all_acc_l, acc_l, iou_l = legacy_mean_iou(results, label, num_classes,
                                              ignore_index)
    assert all_acc == all_acc_l
    assert np.allclose(acc, acc_l)
    assert np.allclose(iou, iou_l)

    all_acc, acc, dice = eval_metrics(
        results, label, num_classes, ignore_index, metrics='mDice')
    all_acc_l, acc_l, dice_l = legacy_mean_dice(results, label, num_classes,
                                                ignore_index)
    assert all_acc == all_acc_l
    assert np.allclose(acc, acc_l)
    assert np.allclose(dice, dice_l)

    all_acc, acc, iou, dice = eval_metrics(
        results, label, num_classes, ignore_index, metrics=['mIoU', 'mDice'])
    assert all_acc == all_acc_l
    assert np.allclose(acc, acc_l)
    assert np.allclose(iou, iou_l)
    assert np.allclose(dice, dice_l)

    results = np.random.randint(0, 5, size=pred_size)
    label = np.random.randint(0, 4, size=pred_size)
    all_acc, acc, iou = eval_metrics(
        results,
        label,
        num_classes,
        ignore_index=255,
        metrics='mIoU',
        nan_to_num=-1)
    assert acc[-1] == -1
    assert iou[-1] == -1

    all_acc, acc, dice = eval_metrics(
        results,
        label,
        num_classes,
        ignore_index=255,
        metrics='mDice',
        nan_to_num=-1)
    assert acc[-1] == -1
    assert dice[-1] == -1

    all_acc, acc, dice, iou = eval_metrics(
        results,
        label,
        num_classes,
        ignore_index=255,
        metrics=['mDice', 'mIoU'],
        nan_to_num=-1)
    assert acc[-1] == -1
    assert dice[-1] == -1
    assert iou[-1] == -1


def test_mean_iou():
    pred_size = (10, 30, 30)
    num_classes = 19
    ignore_index = 255
    results = np.random.randint(0, num_classes, size=pred_size)
    label = np.random.randint(0, num_classes, size=pred_size)
    label[:, 2, 5:10] = ignore_index
    all_acc, acc, iou = mean_iou(results, label, num_classes, ignore_index)
    all_acc_l, acc_l, iou_l = legacy_mean_iou(results, label, num_classes,
                                              ignore_index)
    assert all_acc == all_acc_l
    assert np.allclose(acc, acc_l)
    assert np.allclose(iou, iou_l)

    results = np.random.randint(0, 5, size=pred_size)
    label = np.random.randint(0, 4, size=pred_size)
    all_acc, acc, iou = mean_iou(
        results, label, num_classes, ignore_index=255, nan_to_num=-1)
    assert acc[-1] == -1
    assert iou[-1] == -1


def test_mean_dice():
    pred_size = (10, 30, 30)
    num_classes = 19
    ignore_index = 255
    results = np.random.randint(0, num_classes, size=pred_size)
    label = np.random.randint(0, num_classes, size=pred_size)
    label[:, 2, 5:10] = ignore_index
    all_acc, acc, iou = mean_dice(results, label, num_classes, ignore_index)
    all_acc_l, acc_l, iou_l = legacy_mean_dice(results, label, num_classes,
                                               ignore_index)
    assert all_acc == all_acc_l
    assert np.allclose(acc, acc_l)
    assert np.allclose(iou, iou_l)

    results = np.random.randint(0, 5, size=pred_size)
    label = np.random.randint(0, 4, size=pred_size)
    all_acc, acc, iou = mean_dice(
        results, label, num_classes, ignore_index=255, nan_to_num=-1)
    assert acc[-1] == -1
    assert iou[-1] == -1