Image Segmentation
Transformers
PyTorch
upernet
Inference Endpoints
File size: 6,625 Bytes
b13b124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import numpy as np
import pytest
import torch

from mmseg.models.losses import Accuracy, reduce_loss, weight_reduce_loss


def test_utils():
    loss = torch.rand(1, 3, 4, 4)
    weight = torch.zeros(1, 3, 4, 4)
    weight[:, :, :2, :2] = 1

    # test reduce_loss()
    reduced = reduce_loss(loss, 'none')
    assert reduced is loss

    reduced = reduce_loss(loss, 'mean')
    np.testing.assert_almost_equal(reduced.numpy(), loss.mean())

    reduced = reduce_loss(loss, 'sum')
    np.testing.assert_almost_equal(reduced.numpy(), loss.sum())

    # test weight_reduce_loss()
    reduced = weight_reduce_loss(loss, weight=None, reduction='none')
    assert reduced is loss

    reduced = weight_reduce_loss(loss, weight=weight, reduction='mean')
    target = (loss * weight).mean()
    np.testing.assert_almost_equal(reduced.numpy(), target)

    reduced = weight_reduce_loss(loss, weight=weight, reduction='sum')
    np.testing.assert_almost_equal(reduced.numpy(), (loss * weight).sum())

    with pytest.raises(AssertionError):
        weight_wrong = weight[0, 0, ...]
        weight_reduce_loss(loss, weight=weight_wrong, reduction='mean')

    with pytest.raises(AssertionError):
        weight_wrong = weight[:, 0:2, ...]
        weight_reduce_loss(loss, weight=weight_wrong, reduction='mean')


def test_ce_loss():
    from mmseg.models import build_loss

    # use_mask and use_sigmoid cannot be true at the same time
    with pytest.raises(AssertionError):
        loss_cfg = dict(
            type='CrossEntropyLoss',
            use_mask=True,
            use_sigmoid=True,
            loss_weight=1.0)
        build_loss(loss_cfg)

    # test loss with class weights
    loss_cls_cfg = dict(
        type='CrossEntropyLoss',
        use_sigmoid=False,
        class_weight=[0.8, 0.2],
        loss_weight=1.0)
    loss_cls = build_loss(loss_cls_cfg)
    fake_pred = torch.Tensor([[100, -100]])
    fake_label = torch.Tensor([1]).long()
    assert torch.allclose(loss_cls(fake_pred, fake_label), torch.tensor(40.))

    loss_cls_cfg = dict(
        type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)
    loss_cls = build_loss(loss_cls_cfg)
    assert torch.allclose(loss_cls(fake_pred, fake_label), torch.tensor(200.))

    loss_cls_cfg = dict(
        type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)
    loss_cls = build_loss(loss_cls_cfg)
    assert torch.allclose(loss_cls(fake_pred, fake_label), torch.tensor(100.))

    fake_pred = torch.full(size=(2, 21, 8, 8), fill_value=0.5)
    fake_label = torch.ones(2, 8, 8).long()
    assert torch.allclose(
        loss_cls(fake_pred, fake_label), torch.tensor(0.9503), atol=1e-4)
    fake_label[:, 0, 0] = 255
    assert torch.allclose(
        loss_cls(fake_pred, fake_label, ignore_index=255),
        torch.tensor(0.9354),
        atol=1e-4)

    # TODO test use_mask


def test_accuracy():
    # test for empty pred
    pred = torch.empty(0, 4)
    label = torch.empty(0)
    accuracy = Accuracy(topk=1)
    acc = accuracy(pred, label)
    assert acc.item() == 0

    pred = torch.Tensor([[0.2, 0.3, 0.6, 0.5], [0.1, 0.1, 0.2, 0.6],
                         [0.9, 0.0, 0.0, 0.1], [0.4, 0.7, 0.1, 0.1],
                         [0.0, 0.0, 0.99, 0]])
    # test for top1
    true_label = torch.Tensor([2, 3, 0, 1, 2]).long()
    accuracy = Accuracy(topk=1)
    acc = accuracy(pred, true_label)
    assert acc.item() == 100

    # test for top1 with score thresh=0.8
    true_label = torch.Tensor([2, 3, 0, 1, 2]).long()
    accuracy = Accuracy(topk=1, thresh=0.8)
    acc = accuracy(pred, true_label)
    assert acc.item() == 40

    # test for top2
    accuracy = Accuracy(topk=2)
    label = torch.Tensor([3, 2, 0, 0, 2]).long()
    acc = accuracy(pred, label)
    assert acc.item() == 100

    # test for both top1 and top2
    accuracy = Accuracy(topk=(1, 2))
    true_label = torch.Tensor([2, 3, 0, 1, 2]).long()
    acc = accuracy(pred, true_label)
    for a in acc:
        assert a.item() == 100

    # topk is larger than pred class number
    with pytest.raises(AssertionError):
        accuracy = Accuracy(topk=5)
        accuracy(pred, true_label)

    # wrong topk type
    with pytest.raises(AssertionError):
        accuracy = Accuracy(topk='wrong type')
        accuracy(pred, true_label)

    # label size is larger than required
    with pytest.raises(AssertionError):
        label = torch.Tensor([2, 3, 0, 1, 2, 0]).long()  # size mismatch
        accuracy = Accuracy()
        accuracy(pred, label)

    # wrong pred dimension
    with pytest.raises(AssertionError):
        accuracy = Accuracy()
        accuracy(pred[:, :, None], true_label)


def test_lovasz_loss():
    from mmseg.models import build_loss

    # loss_type should be 'binary' or 'multi_class'
    with pytest.raises(AssertionError):
        loss_cfg = dict(
            type='LovaszLoss',
            loss_type='Binary',
            reduction='none',
            loss_weight=1.0)
        build_loss(loss_cfg)

    # reduction should be 'none' when per_image is False.
    with pytest.raises(AssertionError):
        loss_cfg = dict(type='LovaszLoss', loss_type='multi_class')
        build_loss(loss_cfg)

    # test lovasz loss with loss_type = 'multi_class' and per_image = False
    loss_cfg = dict(type='LovaszLoss', reduction='none', loss_weight=1.0)
    lovasz_loss = build_loss(loss_cfg)
    logits = torch.rand(1, 3, 4, 4)
    labels = (torch.rand(1, 4, 4) * 2).long()
    lovasz_loss(logits, labels)

    # test lovasz loss with loss_type = 'multi_class' and per_image = True
    loss_cfg = dict(
        type='LovaszLoss',
        per_image=True,
        reduction='mean',
        class_weight=[1.0, 2.0, 3.0],
        loss_weight=1.0)
    lovasz_loss = build_loss(loss_cfg)
    logits = torch.rand(1, 3, 4, 4)
    labels = (torch.rand(1, 4, 4) * 2).long()
    lovasz_loss(logits, labels, ignore_index=None)

    # test lovasz loss with loss_type = 'binary' and per_image = False
    loss_cfg = dict(
        type='LovaszLoss',
        loss_type='binary',
        reduction='none',
        loss_weight=1.0)
    lovasz_loss = build_loss(loss_cfg)
    logits = torch.rand(2, 4, 4)
    labels = (torch.rand(2, 4, 4)).long()
    lovasz_loss(logits, labels)

    # test lovasz loss with loss_type = 'binary' and per_image = True
    loss_cfg = dict(
        type='LovaszLoss',
        loss_type='binary',
        per_image=True,
        reduction='mean',
        loss_weight=1.0)
    lovasz_loss = build_loss(loss_cfg)
    logits = torch.rand(2, 4, 4)
    labels = (torch.rand(2, 4, 4)).long()
    lovasz_loss(logits, labels, ignore_index=None)