Image Segmentation
Transformers
PyTorch
upernet
Inference Endpoints
File size: 4,786 Bytes
b13b124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import mmcv
import pytest
import torch

from mmseg.models.utils import InvertedResidual, InvertedResidualV3


def test_inv_residual():
    with pytest.raises(AssertionError):
        # test stride assertion.
        InvertedResidual(32, 32, 3, 4)

    # test default config with res connection.
    # set expand_ratio = 4, stride = 1 and inp=oup.
    inv_module = InvertedResidual(32, 32, 1, 4)
    assert inv_module.use_res_connect
    assert inv_module.conv[0].kernel_size == (1, 1)
    assert inv_module.conv[0].padding == 0
    assert inv_module.conv[1].kernel_size == (3, 3)
    assert inv_module.conv[1].padding == 1
    assert inv_module.conv[0].with_norm
    assert inv_module.conv[1].with_norm
    x = torch.rand(1, 32, 64, 64)
    output = inv_module(x)
    assert output.shape == (1, 32, 64, 64)

    # test inv_residual module without res connection.
    # set expand_ratio = 4, stride = 2.
    inv_module = InvertedResidual(32, 32, 2, 4)
    assert not inv_module.use_res_connect
    assert inv_module.conv[0].kernel_size == (1, 1)
    x = torch.rand(1, 32, 64, 64)
    output = inv_module(x)
    assert output.shape == (1, 32, 32, 32)

    # test expand_ratio == 1
    inv_module = InvertedResidual(32, 32, 1, 1)
    assert inv_module.conv[0].kernel_size == (3, 3)
    x = torch.rand(1, 32, 64, 64)
    output = inv_module(x)
    assert output.shape == (1, 32, 64, 64)

    # test with checkpoint forward
    inv_module = InvertedResidual(32, 32, 1, 1, with_cp=True)
    assert inv_module.with_cp
    x = torch.rand(1, 32, 64, 64, requires_grad=True)
    output = inv_module(x)
    assert output.shape == (1, 32, 64, 64)


def test_inv_residualv3():
    with pytest.raises(AssertionError):
        # test stride assertion.
        InvertedResidualV3(32, 32, 16, stride=3)

    with pytest.raises(AssertionError):
        # test assertion.
        InvertedResidualV3(32, 32, 16, with_expand_conv=False)

    # test with se_cfg=None, with_expand_conv=False
    inv_module = InvertedResidualV3(32, 32, 32, with_expand_conv=False)

    assert inv_module.with_res_shortcut is True
    assert inv_module.with_se is False
    assert inv_module.with_expand_conv is False
    assert not hasattr(inv_module, 'expand_conv')
    assert isinstance(inv_module.depthwise_conv.conv, torch.nn.Conv2d)
    assert inv_module.depthwise_conv.conv.kernel_size == (3, 3)
    assert inv_module.depthwise_conv.conv.stride == (1, 1)
    assert inv_module.depthwise_conv.conv.padding == (1, 1)
    assert isinstance(inv_module.depthwise_conv.bn, torch.nn.BatchNorm2d)
    assert isinstance(inv_module.depthwise_conv.activate, torch.nn.ReLU)
    assert inv_module.linear_conv.conv.kernel_size == (1, 1)
    assert inv_module.linear_conv.conv.stride == (1, 1)
    assert inv_module.linear_conv.conv.padding == (0, 0)
    assert isinstance(inv_module.linear_conv.bn, torch.nn.BatchNorm2d)

    x = torch.rand(1, 32, 64, 64)
    output = inv_module(x)
    assert output.shape == (1, 32, 64, 64)

    # test with se_cfg and with_expand_conv
    se_cfg = dict(
        channels=16,
        ratio=4,
        act_cfg=(dict(type='ReLU'),
                 dict(type='HSigmoid', bias=3.0, divisor=6.0)))
    act_cfg = dict(type='HSwish')
    inv_module = InvertedResidualV3(
        32, 40, 16, 3, 2, se_cfg=se_cfg, act_cfg=act_cfg)
    assert inv_module.with_res_shortcut is False
    assert inv_module.with_se is True
    assert inv_module.with_expand_conv is True
    assert inv_module.expand_conv.conv.kernel_size == (1, 1)
    assert inv_module.expand_conv.conv.stride == (1, 1)
    assert inv_module.expand_conv.conv.padding == (0, 0)
    assert isinstance(inv_module.expand_conv.activate, mmcv.cnn.HSwish)

    assert isinstance(inv_module.depthwise_conv.conv,
                      mmcv.cnn.bricks.Conv2dAdaptivePadding)
    assert inv_module.depthwise_conv.conv.kernel_size == (3, 3)
    assert inv_module.depthwise_conv.conv.stride == (2, 2)
    assert inv_module.depthwise_conv.conv.padding == (0, 0)
    assert isinstance(inv_module.depthwise_conv.bn, torch.nn.BatchNorm2d)
    assert isinstance(inv_module.depthwise_conv.activate, mmcv.cnn.HSwish)
    assert inv_module.linear_conv.conv.kernel_size == (1, 1)
    assert inv_module.linear_conv.conv.stride == (1, 1)
    assert inv_module.linear_conv.conv.padding == (0, 0)
    assert isinstance(inv_module.linear_conv.bn, torch.nn.BatchNorm2d)
    x = torch.rand(1, 32, 64, 64)
    output = inv_module(x)
    assert output.shape == (1, 40, 32, 32)

    # test with checkpoint forward
    inv_module = InvertedResidualV3(
        32, 40, 16, 3, 2, se_cfg=se_cfg, act_cfg=act_cfg, with_cp=True)
    assert inv_module.with_cp
    x = torch.randn(2, 32, 64, 64, requires_grad=True)
    output = inv_module(x)
    assert output.shape == (2, 40, 32, 32)