Image Segmentation
Transformers
PyTorch
upernet
Inference Endpoints
File size: 6,087 Bytes
b13b124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import math
import os.path as osp

import pytest
from torch.utils.data import (DistributedSampler, RandomSampler,
                              SequentialSampler)

from mmseg.datasets import (DATASETS, ConcatDataset, build_dataloader,
                            build_dataset)


@DATASETS.register_module()
class ToyDataset(object):

    def __init__(self, cnt=0):
        self.cnt = cnt

    def __item__(self, idx):
        return idx

    def __len__(self):
        return 100


def test_build_dataset():
    cfg = dict(type='ToyDataset')
    dataset = build_dataset(cfg)
    assert isinstance(dataset, ToyDataset)
    assert dataset.cnt == 0
    dataset = build_dataset(cfg, default_args=dict(cnt=1))
    assert isinstance(dataset, ToyDataset)
    assert dataset.cnt == 1

    data_root = osp.join(osp.dirname(__file__), '../data/pseudo_dataset')
    img_dir = 'imgs/'
    ann_dir = 'gts/'

    # We use same dir twice for simplicity
    # with ann_dir
    cfg = dict(
        type='CustomDataset',
        pipeline=[],
        data_root=data_root,
        img_dir=[img_dir, img_dir],
        ann_dir=[ann_dir, ann_dir])
    dataset = build_dataset(cfg)
    assert isinstance(dataset, ConcatDataset)
    assert len(dataset) == 10

    # with ann_dir, split
    cfg = dict(
        type='CustomDataset',
        pipeline=[],
        data_root=data_root,
        img_dir=img_dir,
        ann_dir=ann_dir,
        split=['splits/train.txt', 'splits/val.txt'])
    dataset = build_dataset(cfg)
    assert isinstance(dataset, ConcatDataset)
    assert len(dataset) == 5

    # with ann_dir, split
    cfg = dict(
        type='CustomDataset',
        pipeline=[],
        data_root=data_root,
        img_dir=img_dir,
        ann_dir=[ann_dir, ann_dir],
        split=['splits/train.txt', 'splits/val.txt'])
    dataset = build_dataset(cfg)
    assert isinstance(dataset, ConcatDataset)
    assert len(dataset) == 5

    # test mode
    cfg = dict(
        type='CustomDataset',
        pipeline=[],
        data_root=data_root,
        img_dir=[img_dir, img_dir],
        test_mode=True)
    dataset = build_dataset(cfg)
    assert isinstance(dataset, ConcatDataset)
    assert len(dataset) == 10

    # test mode with splits
    cfg = dict(
        type='CustomDataset',
        pipeline=[],
        data_root=data_root,
        img_dir=[img_dir, img_dir],
        split=['splits/val.txt', 'splits/val.txt'],
        test_mode=True)
    dataset = build_dataset(cfg)
    assert isinstance(dataset, ConcatDataset)
    assert len(dataset) == 2

    # len(ann_dir) should be zero or len(img_dir) when len(img_dir) > 1
    with pytest.raises(AssertionError):
        cfg = dict(
            type='CustomDataset',
            pipeline=[],
            data_root=data_root,
            img_dir=[img_dir, img_dir],
            ann_dir=[ann_dir, ann_dir, ann_dir])
        build_dataset(cfg)

    # len(splits) should be zero or len(img_dir) when len(img_dir) > 1
    with pytest.raises(AssertionError):
        cfg = dict(
            type='CustomDataset',
            pipeline=[],
            data_root=data_root,
            img_dir=[img_dir, img_dir],
            split=['splits/val.txt', 'splits/val.txt', 'splits/val.txt'])
        build_dataset(cfg)

    # len(splits) == len(ann_dir) when only len(img_dir) == 1 and len(
    # ann_dir) > 1
    with pytest.raises(AssertionError):
        cfg = dict(
            type='CustomDataset',
            pipeline=[],
            data_root=data_root,
            img_dir=img_dir,
            ann_dir=[ann_dir, ann_dir],
            split=['splits/val.txt', 'splits/val.txt', 'splits/val.txt'])
        build_dataset(cfg)


def test_build_dataloader():
    dataset = ToyDataset()
    samples_per_gpu = 3
    # dist=True, shuffle=True, 1GPU
    dataloader = build_dataloader(
        dataset, samples_per_gpu=samples_per_gpu, workers_per_gpu=2)
    assert dataloader.batch_size == samples_per_gpu
    assert len(dataloader) == int(math.ceil(len(dataset) / samples_per_gpu))
    assert isinstance(dataloader.sampler, DistributedSampler)
    assert dataloader.sampler.shuffle

    # dist=True, shuffle=False, 1GPU
    dataloader = build_dataloader(
        dataset,
        samples_per_gpu=samples_per_gpu,
        workers_per_gpu=2,
        shuffle=False)
    assert dataloader.batch_size == samples_per_gpu
    assert len(dataloader) == int(math.ceil(len(dataset) / samples_per_gpu))
    assert isinstance(dataloader.sampler, DistributedSampler)
    assert not dataloader.sampler.shuffle

    # dist=True, shuffle=True, 8GPU
    dataloader = build_dataloader(
        dataset,
        samples_per_gpu=samples_per_gpu,
        workers_per_gpu=2,
        num_gpus=8)
    assert dataloader.batch_size == samples_per_gpu
    assert len(dataloader) == int(math.ceil(len(dataset) / samples_per_gpu))
    assert dataloader.num_workers == 2

    # dist=False, shuffle=True, 1GPU
    dataloader = build_dataloader(
        dataset,
        samples_per_gpu=samples_per_gpu,
        workers_per_gpu=2,
        dist=False)
    assert dataloader.batch_size == samples_per_gpu
    assert len(dataloader) == int(math.ceil(len(dataset) / samples_per_gpu))
    assert isinstance(dataloader.sampler, RandomSampler)
    assert dataloader.num_workers == 2

    # dist=False, shuffle=False, 1GPU
    dataloader = build_dataloader(
        dataset,
        samples_per_gpu=3,
        workers_per_gpu=2,
        shuffle=False,
        dist=False)
    assert dataloader.batch_size == samples_per_gpu
    assert len(dataloader) == int(math.ceil(len(dataset) / samples_per_gpu))
    assert isinstance(dataloader.sampler, SequentialSampler)
    assert dataloader.num_workers == 2

    # dist=False, shuffle=True, 8GPU
    dataloader = build_dataloader(
        dataset, samples_per_gpu=3, workers_per_gpu=2, num_gpus=8, dist=False)
    assert dataloader.batch_size == samples_per_gpu * 8
    assert len(dataloader) == int(
        math.ceil(len(dataset) / samples_per_gpu / 8))
    assert isinstance(dataloader.sampler, RandomSampler)
    assert dataloader.num_workers == 16