File size: 7,425 Bytes
b13b124 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
"""pytest tests/test_forward.py."""
import copy
from os.path import dirname, exists, join
from unittest.mock import patch
import numpy as np
import pytest
import torch
import torch.nn as nn
from mmcv.utils.parrots_wrapper import SyncBatchNorm, _BatchNorm
def _demo_mm_inputs(input_shape=(2, 3, 8, 16), num_classes=10):
"""Create a superset of inputs needed to run test or train batches.
Args:
input_shape (tuple):
input batch dimensions
num_classes (int):
number of semantic classes
"""
(N, C, H, W) = input_shape
rng = np.random.RandomState(0)
imgs = rng.rand(*input_shape)
segs = rng.randint(
low=0, high=num_classes - 1, size=(N, 1, H, W)).astype(np.uint8)
img_metas = [{
'img_shape': (H, W, C),
'ori_shape': (H, W, C),
'pad_shape': (H, W, C),
'filename': '<demo>.png',
'scale_factor': 1.0,
'flip': False,
'flip_direction': 'horizontal'
} for _ in range(N)]
mm_inputs = {
'imgs': torch.FloatTensor(imgs),
'img_metas': img_metas,
'gt_semantic_seg': torch.LongTensor(segs)
}
return mm_inputs
def _get_config_directory():
"""Find the predefined segmentor config directory."""
try:
# Assume we are running in the source mmsegmentation repo
repo_dpath = dirname(dirname(dirname(__file__)))
except NameError:
# For IPython development when this __file__ is not defined
import mmseg
repo_dpath = dirname(dirname(dirname(mmseg.__file__)))
config_dpath = join(repo_dpath, 'configs')
if not exists(config_dpath):
raise Exception('Cannot find config path')
return config_dpath
def _get_config_module(fname):
"""Load a configuration as a python module."""
from mmcv import Config
config_dpath = _get_config_directory()
config_fpath = join(config_dpath, fname)
config_mod = Config.fromfile(config_fpath)
return config_mod
def _get_segmentor_cfg(fname):
"""Grab configs necessary to create a segmentor.
These are deep copied to allow for safe modification of parameters without
influencing other tests.
"""
config = _get_config_module(fname)
model = copy.deepcopy(config.model)
return model
def test_pspnet_forward():
_test_encoder_decoder_forward(
'pspnet/pspnet_r50-d8_512x1024_40k_cityscapes.py')
def test_fcn_forward():
_test_encoder_decoder_forward('fcn/fcn_r50-d8_512x1024_40k_cityscapes.py')
def test_deeplabv3_forward():
_test_encoder_decoder_forward(
'deeplabv3/deeplabv3_r50-d8_512x1024_40k_cityscapes.py')
def test_deeplabv3plus_forward():
_test_encoder_decoder_forward(
'deeplabv3plus/deeplabv3plus_r50-d8_512x1024_40k_cityscapes.py')
def test_gcnet_forward():
_test_encoder_decoder_forward(
'gcnet/gcnet_r50-d8_512x1024_40k_cityscapes.py')
def test_ann_forward():
_test_encoder_decoder_forward('ann/ann_r50-d8_512x1024_40k_cityscapes.py')
def test_ccnet_forward():
if not torch.cuda.is_available():
pytest.skip('CCNet requires CUDA')
_test_encoder_decoder_forward(
'ccnet/ccnet_r50-d8_512x1024_40k_cityscapes.py')
def test_danet_forward():
_test_encoder_decoder_forward(
'danet/danet_r50-d8_512x1024_40k_cityscapes.py')
def test_nonlocal_net_forward():
_test_encoder_decoder_forward(
'nonlocal_net/nonlocal_r50-d8_512x1024_40k_cityscapes.py')
def test_upernet_forward():
_test_encoder_decoder_forward(
'upernet/upernet_r50_512x1024_40k_cityscapes.py')
def test_hrnet_forward():
_test_encoder_decoder_forward('hrnet/fcn_hr18s_512x1024_40k_cityscapes.py')
def test_ocrnet_forward():
_test_encoder_decoder_forward(
'ocrnet/ocrnet_hr18s_512x1024_40k_cityscapes.py')
def test_psanet_forward():
_test_encoder_decoder_forward(
'psanet/psanet_r50-d8_512x1024_40k_cityscapes.py')
def test_encnet_forward():
_test_encoder_decoder_forward(
'encnet/encnet_r50-d8_512x1024_40k_cityscapes.py')
def test_sem_fpn_forward():
_test_encoder_decoder_forward('sem_fpn/fpn_r50_512x1024_80k_cityscapes.py')
def test_point_rend_forward():
_test_encoder_decoder_forward(
'point_rend/pointrend_r50_512x1024_80k_cityscapes.py')
def test_mobilenet_v2_forward():
_test_encoder_decoder_forward(
'mobilenet_v2/pspnet_m-v2-d8_512x1024_80k_cityscapes.py')
def test_dnlnet_forward():
_test_encoder_decoder_forward(
'dnlnet/dnl_r50-d8_512x1024_40k_cityscapes.py')
def test_emanet_forward():
_test_encoder_decoder_forward(
'emanet/emanet_r50-d8_512x1024_80k_cityscapes.py')
def get_world_size(process_group):
return 1
def _check_input_dim(self, inputs):
pass
def _convert_batchnorm(module):
module_output = module
if isinstance(module, SyncBatchNorm):
# to be consistent with SyncBN, we hack dim check function in BN
module_output = _BatchNorm(module.num_features, module.eps,
module.momentum, module.affine,
module.track_running_stats)
if module.affine:
module_output.weight.data = module.weight.data.clone().detach()
module_output.bias.data = module.bias.data.clone().detach()
# keep requires_grad unchanged
module_output.weight.requires_grad = module.weight.requires_grad
module_output.bias.requires_grad = module.bias.requires_grad
module_output.running_mean = module.running_mean
module_output.running_var = module.running_var
module_output.num_batches_tracked = module.num_batches_tracked
for name, child in module.named_children():
module_output.add_module(name, _convert_batchnorm(child))
del module
return module_output
@patch('torch.nn.modules.batchnorm._BatchNorm._check_input_dim',
_check_input_dim)
@patch('torch.distributed.get_world_size', get_world_size)
def _test_encoder_decoder_forward(cfg_file):
model = _get_segmentor_cfg(cfg_file)
model['pretrained'] = None
model['test_cfg']['mode'] = 'whole'
from mmseg.models import build_segmentor
segmentor = build_segmentor(model)
if isinstance(segmentor.decode_head, nn.ModuleList):
num_classes = segmentor.decode_head[-1].num_classes
else:
num_classes = segmentor.decode_head.num_classes
# batch_size=2 for BatchNorm
input_shape = (2, 3, 32, 32)
mm_inputs = _demo_mm_inputs(input_shape, num_classes=num_classes)
imgs = mm_inputs.pop('imgs')
img_metas = mm_inputs.pop('img_metas')
gt_semantic_seg = mm_inputs['gt_semantic_seg']
# convert to cuda Tensor if applicable
if torch.cuda.is_available():
segmentor = segmentor.cuda()
imgs = imgs.cuda()
gt_semantic_seg = gt_semantic_seg.cuda()
else:
segmentor = _convert_batchnorm(segmentor)
# Test forward train
losses = segmentor.forward(
imgs, img_metas, gt_semantic_seg=gt_semantic_seg, return_loss=True)
assert isinstance(losses, dict)
# Test forward test
with torch.no_grad():
segmentor.eval()
# pack into lists
img_list = [img[None, :] for img in imgs]
img_meta_list = [[img_meta] for img_meta in img_metas]
segmentor.forward(img_list, img_meta_list, return_loss=False)
|