File size: 6,346 Bytes
b13b124 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
## Changelog
### V0.11 (02/02/2021)
**Highlights**
- Support memory efficient test, add more UNet models.
**Bug Fixes**
- Fixed TTA resize scale ([#334](https://github.com/open-mmlab/mmsegmentation/pull/334))
- Fixed CI for pip 20.3 ([#307](https://github.com/open-mmlab/mmsegmentation/pull/307))
- Fixed ADE20k test ([#359](https://github.com/open-mmlab/mmsegmentation/pull/359))
**New Features**
- Support memory efficient test ([#330](https://github.com/open-mmlab/mmsegmentation/pull/330))
- Add more UNet benchmarks ([#324](https://github.com/open-mmlab/mmsegmentation/pull/324))
- Support Lovasz Loss ([#351](https://github.com/open-mmlab/mmsegmentation/pull/351))
**Improvements**
- Move train_cfg/test_cfg inside model ([#341](https://github.com/open-mmlab/mmsegmentation/pull/341))
### V0.10 (01/01/2021)
**Highlights**
- Support MobileNetV3, DMNet, APCNet. Add models of ResNet18V1b, ResNet18V1c, ResNet50V1b.
**Bug Fixes**
- Fixed CPU TTA ([#276](https://github.com/open-mmlab/mmsegmentation/pull/276))
- Fixed CI for pip 20.3 ([#307](https://github.com/open-mmlab/mmsegmentation/pull/307))
**New Features**
- Add ResNet18V1b, ResNet18V1c, ResNet50V1b, ResNet101V1b models ([#316](https://github.com/open-mmlab/mmsegmentation/pull/316))
- Support MobileNetV3 ([#268](https://github.com/open-mmlab/mmsegmentation/pull/268))
- Add 4 retinal vessel segmentation benchmark ([#315](https://github.com/open-mmlab/mmsegmentation/pull/315))
- Support DMNet ([#313](https://github.com/open-mmlab/mmsegmentation/pull/313))
- Support APCNet ([#299](https://github.com/open-mmlab/mmsegmentation/pull/299))
**Improvements**
- Refactor Documentation page ([#311](https://github.com/open-mmlab/mmsegmentation/pull/311))
- Support resize data augmentation according to original image size ([#291](https://github.com/open-mmlab/mmsegmentation/pull/291))
### V0.9 (30/11/2020)
**Highlights**
- Support 4 medical dataset, UNet and CGNet.
**New Features**
- Support RandomRotate transform ([#215](https://github.com/open-mmlab/mmsegmentation/pull/215), [#260](https://github.com/open-mmlab/mmsegmentation/pull/260))
- Support RGB2Gray transform ([#227](https://github.com/open-mmlab/mmsegmentation/pull/227))
- Support Rerange transform ([#228](https://github.com/open-mmlab/mmsegmentation/pull/228))
- Support ignore_index for BCE loss ([#210](https://github.com/open-mmlab/mmsegmentation/pull/210))
- Add modelzoo statistics ([#263](https://github.com/open-mmlab/mmsegmentation/pull/263))
- Support Dice evaluation metric ([#225](https://github.com/open-mmlab/mmsegmentation/pull/225))
- Support Adjust Gamma transform ([#232](https://github.com/open-mmlab/mmsegmentation/pull/232))
- Support CLAHE transform ([#229](https://github.com/open-mmlab/mmsegmentation/pull/229))
**Bug Fixes**
- Fixed detail API link ([#267](https://github.com/open-mmlab/mmsegmentation/pull/267))
### V0.8 (03/11/2020)
**Highlights**
- Support 4 medical dataset, UNet and CGNet.
**New Features**
- Support customize runner ([#118](https://github.com/open-mmlab/mmsegmentation/pull/118))
- Support UNet ([#161](https://github.com/open-mmlab/mmsegmentation/pull/162))
- Support CHASE_DB1, DRIVE, STARE, HRD ([#203](https://github.com/open-mmlab/mmsegmentation/pull/203))
- Support CGNet ([#223](https://github.com/open-mmlab/mmsegmentation/pull/223))
### V0.7 (07/10/2020)
**Highlights**
- Support Pascal Context dataset and customizing class dataset.
**Bug Fixes**
- Fixed CPU inference ([#153](https://github.com/open-mmlab/mmsegmentation/pull/153))
**New Features**
- Add DeepLab OS16 models ([#154](https://github.com/open-mmlab/mmsegmentation/pull/154))
- Support Pascal Context dataset ([#133](https://github.com/open-mmlab/mmsegmentation/pull/133))
- Support customizing dataset classes ([#71](https://github.com/open-mmlab/mmsegmentation/pull/71))
- Support customizing dataset palette ([#157](https://github.com/open-mmlab/mmsegmentation/pull/157))
**Improvements**
- Support 4D tensor output in ONNX ([#150](https://github.com/open-mmlab/mmsegmentation/pull/150))
- Remove redundancies in ONNX export ([#160](https://github.com/open-mmlab/mmsegmentation/pull/160))
- Migrate to MMCV DepthwiseSeparableConv ([#158](https://github.com/open-mmlab/mmsegmentation/pull/158))
- Migrate to MMCV collect_env ([#137](https://github.com/open-mmlab/mmsegmentation/pull/137))
- Use img_prefix and seg_prefix for loading ([#153](https://github.com/open-mmlab/mmsegmentation/pull/153))
### V0.6 (10/09/2020)
**Highlights**
- Support new methods i.e. MobileNetV2, EMANet, DNL, PointRend, Semantic FPN, Fast-SCNN, ResNeSt.
**Bug Fixes**
- Fixed sliding inference ONNX export ([#90](https://github.com/open-mmlab/mmsegmentation/pull/90))
**New Features**
- Support MobileNet v2 ([#86](https://github.com/open-mmlab/mmsegmentation/pull/86))
- Support EMANet ([#34](https://github.com/open-mmlab/mmsegmentation/pull/34))
- Support DNL ([#37](https://github.com/open-mmlab/mmsegmentation/pull/37))
- Support PointRend ([#109](https://github.com/open-mmlab/mmsegmentation/pull/109))
- Support Semantic FPN ([#94](https://github.com/open-mmlab/mmsegmentation/pull/94))
- Support Fast-SCNN ([#58](https://github.com/open-mmlab/mmsegmentation/pull/58))
- Support ResNeSt backbone ([#47](https://github.com/open-mmlab/mmsegmentation/pull/47))
- Support ONNX export (experimental) ([#12](https://github.com/open-mmlab/mmsegmentation/pull/12))
**Improvements**
- Support Upsample in ONNX ([#100](https://github.com/open-mmlab/mmsegmentation/pull/100))
- Support Windows install (experimental) ([#75](https://github.com/open-mmlab/mmsegmentation/pull/75))
- Add more OCRNet results ([#20](https://github.com/open-mmlab/mmsegmentation/pull/20))
- Add PyTorch 1.6 CI ([#64](https://github.com/open-mmlab/mmsegmentation/pull/64))
- Get version and githash automatically ([#55](https://github.com/open-mmlab/mmsegmentation/pull/55))
### v0.5.1 (11/08/2020)
**Highlights**
- Support FP16 and more generalized OHEM
**Bug Fixes**
- Fixed Pascal VOC conversion script (#19)
- Fixed OHEM weight assign bug (#54)
- Fixed palette type when palette is not given (#27)
**New Features**
- Support FP16 (#21)
- Generalized OHEM (#54)
**Improvements**
- Add load-from flag (#33)
- Fixed training tricks doc about different learning rates of model (#26)
|