Image Segmentation
Transformers
PyTorch
upernet
Inference Endpoints
File size: 5,173 Bytes
b13b124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import warnings

import mmcv

from ..builder import PIPELINES
from .compose import Compose


@PIPELINES.register_module()
class MultiScaleFlipAug(object):
    """Test-time augmentation with multiple scales and flipping.

    An example configuration is as followed:

    .. code-block::

        img_scale=(2048, 1024),
        img_ratios=[0.5, 1.0],
        flip=True,
        transforms=[
            dict(type='Resize', keep_ratio=True),
            dict(type='RandomFlip'),
            dict(type='Normalize', **img_norm_cfg),
            dict(type='Pad', size_divisor=32),
            dict(type='ImageToTensor', keys=['img']),
            dict(type='Collect', keys=['img']),
        ]

    After MultiScaleFLipAug with above configuration, the results are wrapped
    into lists of the same length as followed:

    .. code-block::

        dict(
            img=[...],
            img_shape=[...],
            scale=[(1024, 512), (1024, 512), (2048, 1024), (2048, 1024)]
            flip=[False, True, False, True]
            ...
        )

    Args:
        transforms (list[dict]): Transforms to apply in each augmentation.
        img_scale (None | tuple | list[tuple]): Images scales for resizing.
        img_ratios (float | list[float]): Image ratios for resizing
        flip (bool): Whether apply flip augmentation. Default: False.
        flip_direction (str | list[str]): Flip augmentation directions,
            options are "horizontal" and "vertical". If flip_direction is list,
            multiple flip augmentations will be applied.
            It has no effect when flip == False. Default: "horizontal".
    """

    def __init__(self,
                 transforms,
                 img_scale,
                 img_ratios=None,
                 flip=False,
                 flip_direction='horizontal'):
        self.transforms = Compose(transforms)
        if img_ratios is not None:
            img_ratios = img_ratios if isinstance(img_ratios,
                                                  list) else [img_ratios]
            assert mmcv.is_list_of(img_ratios, float)
        if img_scale is None:
            # mode 1: given img_scale=None and a range of image ratio
            self.img_scale = None
            assert mmcv.is_list_of(img_ratios, float)
        elif isinstance(img_scale, tuple) and mmcv.is_list_of(
                img_ratios, float):
            assert len(img_scale) == 2
            # mode 2: given a scale and a range of image ratio
            self.img_scale = [(int(img_scale[0] * ratio),
                               int(img_scale[1] * ratio))
                              for ratio in img_ratios]
        else:
            # mode 3: given multiple scales
            self.img_scale = img_scale if isinstance(img_scale,
                                                     list) else [img_scale]
        assert mmcv.is_list_of(self.img_scale, tuple) or self.img_scale is None
        self.flip = flip
        self.img_ratios = img_ratios
        self.flip_direction = flip_direction if isinstance(
            flip_direction, list) else [flip_direction]
        assert mmcv.is_list_of(self.flip_direction, str)
        if not self.flip and self.flip_direction != ['horizontal']:
            warnings.warn(
                'flip_direction has no effect when flip is set to False')
        if (self.flip
                and not any([t['type'] == 'RandomFlip' for t in transforms])):
            warnings.warn(
                'flip has no effect when RandomFlip is not in transforms')

    def __call__(self, results):
        """Call function to apply test time augment transforms on results.

        Args:
            results (dict): Result dict contains the data to transform.

        Returns:
           dict[str: list]: The augmented data, where each value is wrapped
               into a list.
        """

        aug_data = []
        if self.img_scale is None and mmcv.is_list_of(self.img_ratios, float):
            h, w = results['img'].shape[:2]
            img_scale = [(int(w * ratio), int(h * ratio))
                         for ratio in self.img_ratios]
        else:
            img_scale = self.img_scale
        flip_aug = [False, True] if self.flip else [False]
        for scale in img_scale:
            for flip in flip_aug:
                for direction in self.flip_direction:
                    _results = results.copy()
                    _results['scale'] = scale
                    _results['flip'] = flip
                    _results['flip_direction'] = direction
                    data = self.transforms(_results)
                    aug_data.append(data)
        # list of dict to dict of list
        aug_data_dict = {key: [] for key in aug_data[0]}
        for data in aug_data:
            for key, val in data.items():
                aug_data_dict[key].append(val)
        return aug_data_dict

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(transforms={self.transforms}, '
        repr_str += f'img_scale={self.img_scale}, flip={self.flip})'
        repr_str += f'flip_direction={self.flip_direction}'
        return repr_str