Image Segmentation
Transformers
PyTorch
upernet
Inference Endpoints
File size: 14,674 Bytes
b13b124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
# Modified from https://github.com/facebookresearch/detectron2/tree/master/projects/PointRend/point_head/point_head.py  # noqa

import torch
import torch.nn as nn
from mmcv.cnn import ConvModule, normal_init
from mmcv.ops import point_sample

from mmseg.models.builder import HEADS
from mmseg.ops import resize
from ..losses import accuracy
from .cascade_decode_head import BaseCascadeDecodeHead


def calculate_uncertainty(seg_logits):
    """Estimate uncertainty based on seg logits.

    For each location of the prediction ``seg_logits`` we estimate
    uncertainty as the difference between top first and top second
    predicted logits.

    Args:
        seg_logits (Tensor): Semantic segmentation logits,
            shape (batch_size, num_classes, height, width).

    Returns:
        scores (Tensor): T uncertainty scores with the most uncertain
            locations having the highest uncertainty score, shape (
            batch_size, 1, height, width)
    """
    top2_scores = torch.topk(seg_logits, k=2, dim=1)[0]
    return (top2_scores[:, 1] - top2_scores[:, 0]).unsqueeze(1)


@HEADS.register_module()
class PointHead(BaseCascadeDecodeHead):
    """A mask point head use in PointRend.

    ``PointHead`` use shared multi-layer perceptron (equivalent to
    nn.Conv1d) to predict the logit of input points. The fine-grained feature
    and coarse feature will be concatenate together for predication.

    Args:
        num_fcs (int): Number of fc layers in the head. Default: 3.
        in_channels (int): Number of input channels. Default: 256.
        fc_channels (int): Number of fc channels. Default: 256.
        num_classes (int): Number of classes for logits. Default: 80.
        class_agnostic (bool): Whether use class agnostic classification.
            If so, the output channels of logits will be 1. Default: False.
        coarse_pred_each_layer (bool): Whether concatenate coarse feature with
            the output of each fc layer. Default: True.
        conv_cfg (dict|None): Dictionary to construct and config conv layer.
            Default: dict(type='Conv1d'))
        norm_cfg (dict|None): Dictionary to construct and config norm layer.
            Default: None.
        loss_point (dict): Dictionary to construct and config loss layer of
            point head. Default: dict(type='CrossEntropyLoss', use_mask=True,
            loss_weight=1.0).
    """

    def __init__(self,
                 num_fcs=3,
                 coarse_pred_each_layer=True,
                 conv_cfg=dict(type='Conv1d'),
                 norm_cfg=None,
                 act_cfg=dict(type='ReLU', inplace=False),
                 **kwargs):
        super(PointHead, self).__init__(
            input_transform='multiple_select',
            conv_cfg=conv_cfg,
            norm_cfg=norm_cfg,
            act_cfg=act_cfg,
            **kwargs)

        self.num_fcs = num_fcs
        self.coarse_pred_each_layer = coarse_pred_each_layer

        fc_in_channels = sum(self.in_channels) + self.num_classes
        fc_channels = self.channels
        self.fcs = nn.ModuleList()
        for k in range(num_fcs):
            fc = ConvModule(
                fc_in_channels,
                fc_channels,
                kernel_size=1,
                stride=1,
                padding=0,
                conv_cfg=conv_cfg,
                norm_cfg=norm_cfg,
                act_cfg=act_cfg)
            self.fcs.append(fc)
            fc_in_channels = fc_channels
            fc_in_channels += self.num_classes if self.coarse_pred_each_layer \
                else 0
        self.fc_seg = nn.Conv1d(
            fc_in_channels,
            self.num_classes,
            kernel_size=1,
            stride=1,
            padding=0)
        if self.dropout_ratio > 0:
            self.dropout = nn.Dropout(self.dropout_ratio)
        delattr(self, 'conv_seg')

    def init_weights(self):
        """Initialize weights of classification layer."""
        normal_init(self.fc_seg, std=0.001)

    def cls_seg(self, feat):
        """Classify each pixel with fc."""
        if self.dropout is not None:
            feat = self.dropout(feat)
        output = self.fc_seg(feat)
        return output

    def forward(self, fine_grained_point_feats, coarse_point_feats):
        x = torch.cat([fine_grained_point_feats, coarse_point_feats], dim=1)
        for fc in self.fcs:
            x = fc(x)
            if self.coarse_pred_each_layer:
                x = torch.cat((x, coarse_point_feats), dim=1)
        return self.cls_seg(x)

    def _get_fine_grained_point_feats(self, x, points):
        """Sample from fine grained features.

        Args:
            x (list[Tensor]): Feature pyramid from by neck or backbone.
            points (Tensor): Point coordinates, shape (batch_size,
                num_points, 2).

        Returns:
            fine_grained_feats (Tensor): Sampled fine grained feature,
                shape (batch_size, sum(channels of x), num_points).
        """

        fine_grained_feats_list = [
            point_sample(_, points, align_corners=self.align_corners)
            for _ in x
        ]
        if len(fine_grained_feats_list) > 1:
            fine_grained_feats = torch.cat(fine_grained_feats_list, dim=1)
        else:
            fine_grained_feats = fine_grained_feats_list[0]

        return fine_grained_feats

    def _get_coarse_point_feats(self, prev_output, points):
        """Sample from fine grained features.

        Args:
            prev_output (list[Tensor]): Prediction of previous decode head.
            points (Tensor): Point coordinates, shape (batch_size,
                num_points, 2).

        Returns:
            coarse_feats (Tensor): Sampled coarse feature, shape (batch_size,
                num_classes, num_points).
        """

        coarse_feats = point_sample(
            prev_output, points, align_corners=self.align_corners)

        return coarse_feats

    def forward_train(self, inputs, prev_output, img_metas, gt_semantic_seg,
                      train_cfg):
        """Forward function for training.
        Args:
            inputs (list[Tensor]): List of multi-level img features.
            prev_output (Tensor): The output of previous decode head.
            img_metas (list[dict]): List of image info dict where each dict
                has: 'img_shape', 'scale_factor', 'flip', and may also contain
                'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'.
                For details on the values of these keys see
                `mmseg/datasets/pipelines/formatting.py:Collect`.
            gt_semantic_seg (Tensor): Semantic segmentation masks
                used if the architecture supports semantic segmentation task.
            train_cfg (dict): The training config.

        Returns:
            dict[str, Tensor]: a dictionary of loss components
        """
        x = self._transform_inputs(inputs)
        with torch.no_grad():
            points = self.get_points_train(
                prev_output, calculate_uncertainty, cfg=train_cfg)
        fine_grained_point_feats = self._get_fine_grained_point_feats(
            x, points)
        coarse_point_feats = self._get_coarse_point_feats(prev_output, points)
        point_logits = self.forward(fine_grained_point_feats,
                                    coarse_point_feats)
        point_label = point_sample(
            gt_semantic_seg.float(),
            points,
            mode='nearest',
            align_corners=self.align_corners)
        point_label = point_label.squeeze(1).long()

        losses = self.losses(point_logits, point_label)

        return losses

    def forward_test(self, inputs, prev_output, img_metas, test_cfg):
        """Forward function for testing.

        Args:
            inputs (list[Tensor]): List of multi-level img features.
            prev_output (Tensor): The output of previous decode head.
            img_metas (list[dict]): List of image info dict where each dict
                has: 'img_shape', 'scale_factor', 'flip', and may also contain
                'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'.
                For details on the values of these keys see
                `mmseg/datasets/pipelines/formatting.py:Collect`.
            test_cfg (dict): The testing config.

        Returns:
            Tensor: Output segmentation map.
        """

        x = self._transform_inputs(inputs)
        refined_seg_logits = prev_output.clone()
        for _ in range(test_cfg.subdivision_steps):
            refined_seg_logits = resize(
                refined_seg_logits,
                scale_factor=test_cfg.scale_factor,
                mode='bilinear',
                align_corners=self.align_corners)
            batch_size, channels, height, width = refined_seg_logits.shape
            point_indices, points = self.get_points_test(
                refined_seg_logits, calculate_uncertainty, cfg=test_cfg)
            fine_grained_point_feats = self._get_fine_grained_point_feats(
                x, points)
            coarse_point_feats = self._get_coarse_point_feats(
                prev_output, points)
            point_logits = self.forward(fine_grained_point_feats,
                                        coarse_point_feats)

            point_indices = point_indices.unsqueeze(1).expand(-1, channels, -1)
            refined_seg_logits = refined_seg_logits.reshape(
                batch_size, channels, height * width)
            refined_seg_logits = refined_seg_logits.scatter_(
                2, point_indices, point_logits)
            refined_seg_logits = refined_seg_logits.view(
                batch_size, channels, height, width)

        return refined_seg_logits

    def losses(self, point_logits, point_label):
        """Compute segmentation loss."""
        loss = dict()
        loss['loss_point'] = self.loss_decode(
            point_logits, point_label, ignore_index=self.ignore_index)
        loss['acc_point'] = accuracy(point_logits, point_label)
        return loss

    def get_points_train(self, seg_logits, uncertainty_func, cfg):
        """Sample points for training.

        Sample points in [0, 1] x [0, 1] coordinate space based on their
        uncertainty. The uncertainties are calculated for each point using
        'uncertainty_func' function that takes point's logit prediction as
        input.

        Args:
            seg_logits (Tensor): Semantic segmentation logits, shape (
                batch_size, num_classes, height, width).
            uncertainty_func (func): uncertainty calculation function.
            cfg (dict): Training config of point head.

        Returns:
            point_coords (Tensor): A tensor of shape (batch_size, num_points,
                2) that contains the coordinates of ``num_points`` sampled
                points.
        """
        num_points = cfg.num_points
        oversample_ratio = cfg.oversample_ratio
        importance_sample_ratio = cfg.importance_sample_ratio
        assert oversample_ratio >= 1
        assert 0 <= importance_sample_ratio <= 1
        batch_size = seg_logits.shape[0]
        num_sampled = int(num_points * oversample_ratio)
        point_coords = torch.rand(
            batch_size, num_sampled, 2, device=seg_logits.device)
        point_logits = point_sample(seg_logits, point_coords)
        # It is crucial to calculate uncertainty based on the sampled
        # prediction value for the points. Calculating uncertainties of the
        # coarse predictions first and sampling them for points leads to
        # incorrect results.  To illustrate this: assume uncertainty func(
        # logits)=-abs(logits), a sampled point between two coarse
        # predictions with -1 and 1 logits has 0 logits, and therefore 0
        # uncertainty value. However, if we calculate uncertainties for the
        # coarse predictions first, both will have -1 uncertainty,
        # and sampled point will get -1 uncertainty.
        point_uncertainties = uncertainty_func(point_logits)
        num_uncertain_points = int(importance_sample_ratio * num_points)
        num_random_points = num_points - num_uncertain_points
        idx = torch.topk(
            point_uncertainties[:, 0, :], k=num_uncertain_points, dim=1)[1]
        shift = num_sampled * torch.arange(
            batch_size, dtype=torch.long, device=seg_logits.device)
        idx += shift[:, None]
        point_coords = point_coords.view(-1, 2)[idx.view(-1), :].view(
            batch_size, num_uncertain_points, 2)
        if num_random_points > 0:
            rand_point_coords = torch.rand(
                batch_size, num_random_points, 2, device=seg_logits.device)
            point_coords = torch.cat((point_coords, rand_point_coords), dim=1)
        return point_coords

    def get_points_test(self, seg_logits, uncertainty_func, cfg):
        """Sample points for testing.

        Find ``num_points`` most uncertain points from ``uncertainty_map``.

        Args:
            seg_logits (Tensor): A tensor of shape (batch_size, num_classes,
                height, width) for class-specific or class-agnostic prediction.
            uncertainty_func (func): uncertainty calculation function.
            cfg (dict): Testing config of point head.

        Returns:
            point_indices (Tensor): A tensor of shape (batch_size, num_points)
                that contains indices from [0, height x width) of the most
                uncertain points.
            point_coords (Tensor): A tensor of shape (batch_size, num_points,
                2) that contains [0, 1] x [0, 1] normalized coordinates of the
                most uncertain points from the ``height x width`` grid .
        """

        num_points = cfg.subdivision_num_points
        uncertainty_map = uncertainty_func(seg_logits)
        batch_size, _, height, width = uncertainty_map.shape
        h_step = 1.0 / height
        w_step = 1.0 / width

        uncertainty_map = uncertainty_map.view(batch_size, height * width)
        num_points = min(height * width, num_points)
        point_indices = uncertainty_map.topk(num_points, dim=1)[1]
        point_coords = torch.zeros(
            batch_size,
            num_points,
            2,
            dtype=torch.float,
            device=seg_logits.device)
        point_coords[:, :, 0] = w_step / 2.0 + (point_indices %
                                                width).float() * w_step
        point_coords[:, :, 1] = h_step / 2.0 + (point_indices //
                                                width).float() * h_step
        return point_indices, point_coords