File size: 14,674 Bytes
b13b124 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
# Modified from https://github.com/facebookresearch/detectron2/tree/master/projects/PointRend/point_head/point_head.py # noqa
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule, normal_init
from mmcv.ops import point_sample
from mmseg.models.builder import HEADS
from mmseg.ops import resize
from ..losses import accuracy
from .cascade_decode_head import BaseCascadeDecodeHead
def calculate_uncertainty(seg_logits):
"""Estimate uncertainty based on seg logits.
For each location of the prediction ``seg_logits`` we estimate
uncertainty as the difference between top first and top second
predicted logits.
Args:
seg_logits (Tensor): Semantic segmentation logits,
shape (batch_size, num_classes, height, width).
Returns:
scores (Tensor): T uncertainty scores with the most uncertain
locations having the highest uncertainty score, shape (
batch_size, 1, height, width)
"""
top2_scores = torch.topk(seg_logits, k=2, dim=1)[0]
return (top2_scores[:, 1] - top2_scores[:, 0]).unsqueeze(1)
@HEADS.register_module()
class PointHead(BaseCascadeDecodeHead):
"""A mask point head use in PointRend.
``PointHead`` use shared multi-layer perceptron (equivalent to
nn.Conv1d) to predict the logit of input points. The fine-grained feature
and coarse feature will be concatenate together for predication.
Args:
num_fcs (int): Number of fc layers in the head. Default: 3.
in_channels (int): Number of input channels. Default: 256.
fc_channels (int): Number of fc channels. Default: 256.
num_classes (int): Number of classes for logits. Default: 80.
class_agnostic (bool): Whether use class agnostic classification.
If so, the output channels of logits will be 1. Default: False.
coarse_pred_each_layer (bool): Whether concatenate coarse feature with
the output of each fc layer. Default: True.
conv_cfg (dict|None): Dictionary to construct and config conv layer.
Default: dict(type='Conv1d'))
norm_cfg (dict|None): Dictionary to construct and config norm layer.
Default: None.
loss_point (dict): Dictionary to construct and config loss layer of
point head. Default: dict(type='CrossEntropyLoss', use_mask=True,
loss_weight=1.0).
"""
def __init__(self,
num_fcs=3,
coarse_pred_each_layer=True,
conv_cfg=dict(type='Conv1d'),
norm_cfg=None,
act_cfg=dict(type='ReLU', inplace=False),
**kwargs):
super(PointHead, self).__init__(
input_transform='multiple_select',
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
**kwargs)
self.num_fcs = num_fcs
self.coarse_pred_each_layer = coarse_pred_each_layer
fc_in_channels = sum(self.in_channels) + self.num_classes
fc_channels = self.channels
self.fcs = nn.ModuleList()
for k in range(num_fcs):
fc = ConvModule(
fc_in_channels,
fc_channels,
kernel_size=1,
stride=1,
padding=0,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
self.fcs.append(fc)
fc_in_channels = fc_channels
fc_in_channels += self.num_classes if self.coarse_pred_each_layer \
else 0
self.fc_seg = nn.Conv1d(
fc_in_channels,
self.num_classes,
kernel_size=1,
stride=1,
padding=0)
if self.dropout_ratio > 0:
self.dropout = nn.Dropout(self.dropout_ratio)
delattr(self, 'conv_seg')
def init_weights(self):
"""Initialize weights of classification layer."""
normal_init(self.fc_seg, std=0.001)
def cls_seg(self, feat):
"""Classify each pixel with fc."""
if self.dropout is not None:
feat = self.dropout(feat)
output = self.fc_seg(feat)
return output
def forward(self, fine_grained_point_feats, coarse_point_feats):
x = torch.cat([fine_grained_point_feats, coarse_point_feats], dim=1)
for fc in self.fcs:
x = fc(x)
if self.coarse_pred_each_layer:
x = torch.cat((x, coarse_point_feats), dim=1)
return self.cls_seg(x)
def _get_fine_grained_point_feats(self, x, points):
"""Sample from fine grained features.
Args:
x (list[Tensor]): Feature pyramid from by neck or backbone.
points (Tensor): Point coordinates, shape (batch_size,
num_points, 2).
Returns:
fine_grained_feats (Tensor): Sampled fine grained feature,
shape (batch_size, sum(channels of x), num_points).
"""
fine_grained_feats_list = [
point_sample(_, points, align_corners=self.align_corners)
for _ in x
]
if len(fine_grained_feats_list) > 1:
fine_grained_feats = torch.cat(fine_grained_feats_list, dim=1)
else:
fine_grained_feats = fine_grained_feats_list[0]
return fine_grained_feats
def _get_coarse_point_feats(self, prev_output, points):
"""Sample from fine grained features.
Args:
prev_output (list[Tensor]): Prediction of previous decode head.
points (Tensor): Point coordinates, shape (batch_size,
num_points, 2).
Returns:
coarse_feats (Tensor): Sampled coarse feature, shape (batch_size,
num_classes, num_points).
"""
coarse_feats = point_sample(
prev_output, points, align_corners=self.align_corners)
return coarse_feats
def forward_train(self, inputs, prev_output, img_metas, gt_semantic_seg,
train_cfg):
"""Forward function for training.
Args:
inputs (list[Tensor]): List of multi-level img features.
prev_output (Tensor): The output of previous decode head.
img_metas (list[dict]): List of image info dict where each dict
has: 'img_shape', 'scale_factor', 'flip', and may also contain
'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'.
For details on the values of these keys see
`mmseg/datasets/pipelines/formatting.py:Collect`.
gt_semantic_seg (Tensor): Semantic segmentation masks
used if the architecture supports semantic segmentation task.
train_cfg (dict): The training config.
Returns:
dict[str, Tensor]: a dictionary of loss components
"""
x = self._transform_inputs(inputs)
with torch.no_grad():
points = self.get_points_train(
prev_output, calculate_uncertainty, cfg=train_cfg)
fine_grained_point_feats = self._get_fine_grained_point_feats(
x, points)
coarse_point_feats = self._get_coarse_point_feats(prev_output, points)
point_logits = self.forward(fine_grained_point_feats,
coarse_point_feats)
point_label = point_sample(
gt_semantic_seg.float(),
points,
mode='nearest',
align_corners=self.align_corners)
point_label = point_label.squeeze(1).long()
losses = self.losses(point_logits, point_label)
return losses
def forward_test(self, inputs, prev_output, img_metas, test_cfg):
"""Forward function for testing.
Args:
inputs (list[Tensor]): List of multi-level img features.
prev_output (Tensor): The output of previous decode head.
img_metas (list[dict]): List of image info dict where each dict
has: 'img_shape', 'scale_factor', 'flip', and may also contain
'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'.
For details on the values of these keys see
`mmseg/datasets/pipelines/formatting.py:Collect`.
test_cfg (dict): The testing config.
Returns:
Tensor: Output segmentation map.
"""
x = self._transform_inputs(inputs)
refined_seg_logits = prev_output.clone()
for _ in range(test_cfg.subdivision_steps):
refined_seg_logits = resize(
refined_seg_logits,
scale_factor=test_cfg.scale_factor,
mode='bilinear',
align_corners=self.align_corners)
batch_size, channels, height, width = refined_seg_logits.shape
point_indices, points = self.get_points_test(
refined_seg_logits, calculate_uncertainty, cfg=test_cfg)
fine_grained_point_feats = self._get_fine_grained_point_feats(
x, points)
coarse_point_feats = self._get_coarse_point_feats(
prev_output, points)
point_logits = self.forward(fine_grained_point_feats,
coarse_point_feats)
point_indices = point_indices.unsqueeze(1).expand(-1, channels, -1)
refined_seg_logits = refined_seg_logits.reshape(
batch_size, channels, height * width)
refined_seg_logits = refined_seg_logits.scatter_(
2, point_indices, point_logits)
refined_seg_logits = refined_seg_logits.view(
batch_size, channels, height, width)
return refined_seg_logits
def losses(self, point_logits, point_label):
"""Compute segmentation loss."""
loss = dict()
loss['loss_point'] = self.loss_decode(
point_logits, point_label, ignore_index=self.ignore_index)
loss['acc_point'] = accuracy(point_logits, point_label)
return loss
def get_points_train(self, seg_logits, uncertainty_func, cfg):
"""Sample points for training.
Sample points in [0, 1] x [0, 1] coordinate space based on their
uncertainty. The uncertainties are calculated for each point using
'uncertainty_func' function that takes point's logit prediction as
input.
Args:
seg_logits (Tensor): Semantic segmentation logits, shape (
batch_size, num_classes, height, width).
uncertainty_func (func): uncertainty calculation function.
cfg (dict): Training config of point head.
Returns:
point_coords (Tensor): A tensor of shape (batch_size, num_points,
2) that contains the coordinates of ``num_points`` sampled
points.
"""
num_points = cfg.num_points
oversample_ratio = cfg.oversample_ratio
importance_sample_ratio = cfg.importance_sample_ratio
assert oversample_ratio >= 1
assert 0 <= importance_sample_ratio <= 1
batch_size = seg_logits.shape[0]
num_sampled = int(num_points * oversample_ratio)
point_coords = torch.rand(
batch_size, num_sampled, 2, device=seg_logits.device)
point_logits = point_sample(seg_logits, point_coords)
# It is crucial to calculate uncertainty based on the sampled
# prediction value for the points. Calculating uncertainties of the
# coarse predictions first and sampling them for points leads to
# incorrect results. To illustrate this: assume uncertainty func(
# logits)=-abs(logits), a sampled point between two coarse
# predictions with -1 and 1 logits has 0 logits, and therefore 0
# uncertainty value. However, if we calculate uncertainties for the
# coarse predictions first, both will have -1 uncertainty,
# and sampled point will get -1 uncertainty.
point_uncertainties = uncertainty_func(point_logits)
num_uncertain_points = int(importance_sample_ratio * num_points)
num_random_points = num_points - num_uncertain_points
idx = torch.topk(
point_uncertainties[:, 0, :], k=num_uncertain_points, dim=1)[1]
shift = num_sampled * torch.arange(
batch_size, dtype=torch.long, device=seg_logits.device)
idx += shift[:, None]
point_coords = point_coords.view(-1, 2)[idx.view(-1), :].view(
batch_size, num_uncertain_points, 2)
if num_random_points > 0:
rand_point_coords = torch.rand(
batch_size, num_random_points, 2, device=seg_logits.device)
point_coords = torch.cat((point_coords, rand_point_coords), dim=1)
return point_coords
def get_points_test(self, seg_logits, uncertainty_func, cfg):
"""Sample points for testing.
Find ``num_points`` most uncertain points from ``uncertainty_map``.
Args:
seg_logits (Tensor): A tensor of shape (batch_size, num_classes,
height, width) for class-specific or class-agnostic prediction.
uncertainty_func (func): uncertainty calculation function.
cfg (dict): Testing config of point head.
Returns:
point_indices (Tensor): A tensor of shape (batch_size, num_points)
that contains indices from [0, height x width) of the most
uncertain points.
point_coords (Tensor): A tensor of shape (batch_size, num_points,
2) that contains [0, 1] x [0, 1] normalized coordinates of the
most uncertain points from the ``height x width`` grid .
"""
num_points = cfg.subdivision_num_points
uncertainty_map = uncertainty_func(seg_logits)
batch_size, _, height, width = uncertainty_map.shape
h_step = 1.0 / height
w_step = 1.0 / width
uncertainty_map = uncertainty_map.view(batch_size, height * width)
num_points = min(height * width, num_points)
point_indices = uncertainty_map.topk(num_points, dim=1)[1]
point_coords = torch.zeros(
batch_size,
num_points,
2,
dtype=torch.float,
device=seg_logits.device)
point_coords[:, :, 0] = w_step / 2.0 + (point_indices %
width).float() * w_step
point_coords[:, :, 1] = h_step / 2.0 + (point_indices //
width).float() * h_step
return point_indices, point_coords
|