Image Segmentation
Transformers
PyTorch
upernet
Inference Endpoints
File size: 3,686 Bytes
b13b124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial
import math

from .helpers import load_pretrained
from .layers import DropPath, to_2tuple, trunc_normal_

from ..builder import HEADS
from .decode_head import BaseDecodeHead
from ..backbones.vit import Block

from mmcv.cnn import build_norm_layer


class MLAHead(nn.Module):
    def __init__(self, mla_channels=256, mlahead_channels=128, norm_cfg=None):
        super(MLAHead, self).__init__()
        self.head2 = nn.Sequential(nn.Conv2d(mla_channels, mlahead_channels, 3, padding=1, bias=False),
                                   build_norm_layer(norm_cfg, mlahead_channels)[1], nn.ReLU(),
                                   nn.Conv2d(mlahead_channels, mlahead_channels, 3, padding=1, bias=False),
                                   build_norm_layer(norm_cfg, mlahead_channels)[1], nn.ReLU())
        self.head3 = nn.Sequential(nn.Conv2d(mla_channels, mlahead_channels, 3, padding=1, bias=False),
                                   build_norm_layer(norm_cfg, mlahead_channels)[1], nn.ReLU(),
                                   nn.Conv2d(mlahead_channels, mlahead_channels, 3, padding=1, bias=False),
                                   build_norm_layer(norm_cfg, mlahead_channels)[1], nn.ReLU())
        self.head4 = nn.Sequential(nn.Conv2d(mla_channels, mlahead_channels, 3, padding=1, bias=False),
                                   build_norm_layer(norm_cfg, mlahead_channels)[1], nn.ReLU(),
                                   nn.Conv2d(mlahead_channels, mlahead_channels, 3, padding=1, bias=False),
                                   build_norm_layer(norm_cfg, mlahead_channels)[1], nn.ReLU())
        self.head5 = nn.Sequential(nn.Conv2d(mla_channels, mlahead_channels, 3, padding=1, bias=False),
                                   build_norm_layer(norm_cfg, mlahead_channels)[1], nn.ReLU(),
                                   nn.Conv2d(mlahead_channels, mlahead_channels, 3, padding=1, bias=False),
                                   build_norm_layer(norm_cfg, mlahead_channels)[1], nn.ReLU())

    def forward(self, mla_p2, mla_p3, mla_p4, mla_p5):
        # head2 = self.head2(mla_p2)
        head2 = F.interpolate(self.head2(mla_p2), 4*mla_p2.shape[-1], mode='bilinear', align_corners=True)
        head3 = F.interpolate(self.head3(mla_p3), 4*mla_p3.shape[-1], mode='bilinear', align_corners=True)
        head4 = F.interpolate(self.head4(mla_p4), 4*mla_p4.shape[-1], mode='bilinear', align_corners=True)
        head5 = F.interpolate(self.head5(mla_p5), 4*mla_p5.shape[-1], mode='bilinear', align_corners=True)
        return torch.cat([head2, head3, head4, head5], dim=1)



@HEADS.register_module()
class VIT_MLAHead(BaseDecodeHead):
    """ Vision Transformer with support for patch or hybrid CNN input stage
    """
    def __init__(self, img_size=768, mla_channels=256, mlahead_channels=128, 
                norm_layer=nn.BatchNorm2d, norm_cfg=None, **kwargs):
        super(VIT_MLAHead, self).__init__(**kwargs)
        self.img_size = img_size
        self.norm_cfg = norm_cfg
        self.mla_channels = mla_channels
        self.BatchNorm = norm_layer
        self.mlahead_channels = mlahead_channels

        self.mlahead = MLAHead(mla_channels=self.mla_channels, mlahead_channels=self.mlahead_channels, norm_cfg=self.norm_cfg)
        self.cls = nn.Conv2d(4 * self.mlahead_channels, self.num_classes, 3, padding=1)

    def forward(self, inputs):
        x = self.mlahead(inputs[0], inputs[1], inputs[2], inputs[3])
        x = self.cls(x)
        x = F.interpolate(x, size=self.img_size, mode='bilinear', align_corners=self.align_corners)        
        return x