Image Segmentation
Transformers
PyTorch
upernet
Inference Endpoints
File size: 11,156 Bytes
b13b124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import torch
import torch.nn as nn
import torch.nn.functional as F

from mmseg.core import add_prefix
from mmseg.ops import resize
from .. import builder
from ..builder import SEGMENTORS
from .base import BaseSegmentor


@SEGMENTORS.register_module()
class EncoderDecoder(BaseSegmentor):
    """Encoder Decoder segmentors.

    EncoderDecoder typically consists of backbone, decode_head, auxiliary_head.
    Note that auxiliary_head is only used for deep supervision during training,
    which could be dumped during inference.
    """

    def __init__(self,
                 backbone,
                 decode_head,
                 neck=None,
                 auxiliary_head=None,
                 train_cfg=None,
                 test_cfg=None,
                 pretrained=None):
        super(EncoderDecoder, self).__init__()
        self.backbone = builder.build_backbone(backbone)
        if neck is not None:
            self.neck = builder.build_neck(neck)
        self._init_decode_head(decode_head)
        self._init_auxiliary_head(auxiliary_head)

        self.train_cfg = train_cfg
        self.test_cfg = test_cfg

        self.init_weights(pretrained=pretrained)

        assert self.with_decode_head

    def _init_decode_head(self, decode_head):
        """Initialize ``decode_head``"""
        self.decode_head = builder.build_head(decode_head)
        self.align_corners = self.decode_head.align_corners
        self.num_classes = self.decode_head.num_classes

    def _init_auxiliary_head(self, auxiliary_head):
        """Initialize ``auxiliary_head``"""
        if auxiliary_head is not None:
            if isinstance(auxiliary_head, list):
                self.auxiliary_head = nn.ModuleList()
                for head_cfg in auxiliary_head:
                    self.auxiliary_head.append(builder.build_head(head_cfg))
            else:
                self.auxiliary_head = builder.build_head(auxiliary_head)

    def init_weights(self, pretrained=None):
        """Initialize the weights in backbone and heads.

        Args:
            pretrained (str, optional): Path to pre-trained weights.
                Defaults to None.
        """

        super(EncoderDecoder, self).init_weights(pretrained)
        self.backbone.init_weights(pretrained=pretrained)
        self.decode_head.init_weights()
        if self.with_auxiliary_head:
            if isinstance(self.auxiliary_head, nn.ModuleList):
                for aux_head in self.auxiliary_head:
                    aux_head.init_weights()
            else:
                self.auxiliary_head.init_weights()

    def extract_feat(self, img):
        """Extract features from images."""
        x = self.backbone(img)
        if self.with_neck:
            x = self.neck(x)
        return x

    def encode_decode(self, img, img_metas):
        """Encode images with backbone and decode into a semantic segmentation
        map of the same size as input."""
        x = self.extract_feat(img)
        out = self._decode_head_forward_test(x, img_metas)
        out = resize(
            input=out,
            size=img.shape[2:],
            mode='bilinear',
            align_corners=self.align_corners)
        return out

    def _decode_head_forward_train(self, x, img_metas, gt_semantic_seg):
        """Run forward function and calculate loss for decode head in
        training."""
        losses = dict()
        loss_decode = self.decode_head.forward_train(x, img_metas,
                                                     gt_semantic_seg,
                                                     self.train_cfg)

        losses.update(add_prefix(loss_decode, 'decode'))
        return losses

    def _decode_head_forward_test(self, x, img_metas):
        """Run forward function and calculate loss for decode head in
        inference."""
        seg_logits = self.decode_head.forward_test(x, img_metas, self.test_cfg)
        return seg_logits

    def _auxiliary_head_forward_train(self, x, img_metas, gt_semantic_seg):
        """Run forward function and calculate loss for auxiliary head in
        training."""
        losses = dict()
        if isinstance(self.auxiliary_head, nn.ModuleList):
            for idx, aux_head in enumerate(self.auxiliary_head):
                loss_aux = aux_head.forward_train(x, img_metas,
                                                  gt_semantic_seg,
                                                  self.train_cfg)
                losses.update(add_prefix(loss_aux, f'aux_{idx}'))
        else:
            loss_aux = self.auxiliary_head.forward_train(
                x, img_metas, gt_semantic_seg, self.train_cfg)
            losses.update(add_prefix(loss_aux, 'aux'))

        return losses

    def forward_dummy(self, img):
        """Dummy forward function."""
        seg_logit = self.encode_decode(img, None)

        return seg_logit

    def forward_train(self, img, img_metas, gt_semantic_seg):
        """Forward function for training.

        Args:
            img (Tensor): Input images.
            img_metas (list[dict]): List of image info dict where each dict
                has: 'img_shape', 'scale_factor', 'flip', and may also contain
                'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'.
                For details on the values of these keys see
                `mmseg/datasets/pipelines/formatting.py:Collect`.
            gt_semantic_seg (Tensor): Semantic segmentation masks
                used if the architecture supports semantic segmentation task.

        Returns:
            dict[str, Tensor]: a dictionary of loss components
        """

        x = self.extract_feat(img)

        losses = dict()

        loss_decode = self._decode_head_forward_train(x, img_metas,
                                                      gt_semantic_seg)
        losses.update(loss_decode)

        if self.with_auxiliary_head:
            loss_aux = self._auxiliary_head_forward_train(
                x, img_metas, gt_semantic_seg)
            losses.update(loss_aux)

        return losses

    # TODO refactor
    def slide_inference(self, img, img_meta, rescale):
        """Inference by sliding-window with overlap.

        If h_crop > h_img or w_crop > w_img, the small patch will be used to
        decode without padding.
        """

        h_stride, w_stride = self.test_cfg.stride
        h_crop, w_crop = self.test_cfg.crop_size
        batch_size, _, h_img, w_img = img.size()
        #print(img.size())
        num_classes = self.num_classes
        h_grids = max(h_img - h_crop + h_stride - 1, 0) // h_stride + 1
        w_grids = max(w_img - w_crop + w_stride - 1, 0) // w_stride + 1
        preds = img.new_zeros((batch_size, num_classes, h_img, w_img))
        count_mat = img.new_zeros((batch_size, 1, h_img, w_img))
        for h_idx in range(h_grids):
            for w_idx in range(w_grids):
                y1 = h_idx * h_stride
                x1 = w_idx * w_stride
                y2 = min(y1 + h_crop, h_img)
                x2 = min(x1 + w_crop, w_img)
                y1 = max(y2 - h_crop, 0)
                x1 = max(x2 - w_crop, 0)
                crop_img = img[:, :, y1:y2, x1:x2]
                crop_seg_logit = self.encode_decode(crop_img, img_meta)
                preds += F.pad(crop_seg_logit,
                               (int(x1), int(preds.shape[3] - x2), int(y1),
                                int(preds.shape[2] - y2)))

                count_mat[:, :, y1:y2, x1:x2] += 1
        assert (count_mat == 0).sum() == 0
        if torch.onnx.is_in_onnx_export():
            # cast count_mat to constant while exporting to ONNX
            count_mat = torch.from_numpy(
                count_mat.cpu().detach().numpy()).to(device=img.device)
        preds = preds / count_mat
        if rescale:
            preds = resize(
                preds,
                size=img_meta[0]['ori_shape'][:2],
                mode='bilinear',
                align_corners=self.align_corners,
                warning=False)
        return preds

    def whole_inference(self, img, img_meta, rescale):
        """Inference with full image."""

        seg_logit = self.encode_decode(img, img_meta)
        if rescale:
            seg_logit = resize(
                seg_logit,
                size=img_meta[0]['ori_shape'][:2],
                mode='bilinear',
                align_corners=self.align_corners,
                warning=False)

        return seg_logit

    def inference(self, img, img_meta, rescale):
        """Inference with slide/whole style.

        Args:
            img (Tensor): The input image of shape (N, 3, H, W).
            img_meta (dict): Image info dict where each dict has: 'img_shape',
                'scale_factor', 'flip', and may also contain
                'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'.
                For details on the values of these keys see
                `mmseg/datasets/pipelines/formatting.py:Collect`.
            rescale (bool): Whether rescale back to original shape.

        Returns:
            Tensor: The output segmentation map.
        """

        assert self.test_cfg.mode in ['slide', 'whole']
        ori_shape = img_meta[0]['ori_shape']
        assert all(_['ori_shape'] == ori_shape for _ in img_meta)
        if self.test_cfg.mode == 'slide':
            seg_logit = self.slide_inference(img, img_meta, rescale)
        else:
            seg_logit = self.whole_inference(img, img_meta, rescale)
        output = F.softmax(seg_logit, dim=1)
        flip = img_meta[0]['flip']
        if flip:
            flip_direction = img_meta[0]['flip_direction']
            assert flip_direction in ['horizontal', 'vertical']
            if flip_direction == 'horizontal':
                output = output.flip(dims=(3, ))
            elif flip_direction == 'vertical':
                output = output.flip(dims=(2, ))

        return output

    def simple_test(self, img, img_meta, rescale=True):
        """Simple test with single image."""
        seg_logit = self.inference(img, img_meta, rescale)
        seg_pred = seg_logit.argmax(dim=1)
        if torch.onnx.is_in_onnx_export():
            # our inference backend only support 4D output
            seg_pred = seg_pred.unsqueeze(0)
            return seg_pred
        seg_pred = seg_pred.cpu().numpy()
        # unravel batch dim
        seg_pred = list(seg_pred)
        return seg_pred

    def aug_test(self, imgs, img_metas, rescale=True):
        """Test with augmentations.

        Only rescale=True is supported.
        """
        # aug_test rescale all imgs back to ori_shape for now
        assert rescale
        # to save memory, we get augmented seg logit inplace
        seg_logit = self.inference(imgs[0], img_metas[0], rescale)
        for i in range(1, len(imgs)):
            cur_seg_logit = self.inference(imgs[i], img_metas[i], rescale)
            seg_logit += cur_seg_logit
        seg_logit /= len(imgs)
        seg_pred = seg_logit.argmax(dim=1)
        seg_pred = seg_pred.cpu().numpy()
        # unravel batch dim
        seg_pred = list(seg_pred)
        return seg_pred