Image Segmentation
Transformers
PyTorch
upernet
Inference Endpoints
File size: 6,125 Bytes
b13b124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import torch
from mmcv.cnn import ConvModule, constant_init
from torch import nn as nn
from torch.nn import functional as F


class SelfAttentionBlock(nn.Module):
    """General self-attention block/non-local block.

    Please refer to https://arxiv.org/abs/1706.03762 for details about key,
    query and value.

    Args:
        key_in_channels (int): Input channels of key feature.
        query_in_channels (int): Input channels of query feature.
        channels (int): Output channels of key/query transform.
        out_channels (int): Output channels.
        share_key_query (bool): Whether share projection weight between key
            and query projection.
        query_downsample (nn.Module): Query downsample module.
        key_downsample (nn.Module): Key downsample module.
        key_query_num_convs (int): Number of convs for key/query projection.
        value_num_convs (int): Number of convs for value projection.
        matmul_norm (bool): Whether normalize attention map with sqrt of
            channels
        with_out (bool): Whether use out projection.
        conv_cfg (dict|None): Config of conv layers.
        norm_cfg (dict|None): Config of norm layers.
        act_cfg (dict|None): Config of activation layers.
    """

    def __init__(self, key_in_channels, query_in_channels, channels,
                 out_channels, share_key_query, query_downsample,
                 key_downsample, key_query_num_convs, value_out_num_convs,
                 key_query_norm, value_out_norm, matmul_norm, with_out,
                 conv_cfg, norm_cfg, act_cfg):
        super(SelfAttentionBlock, self).__init__()
        if share_key_query:
            assert key_in_channels == query_in_channels
        self.key_in_channels = key_in_channels
        self.query_in_channels = query_in_channels
        self.out_channels = out_channels
        self.channels = channels
        self.share_key_query = share_key_query
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.act_cfg = act_cfg
        self.key_project = self.build_project(
            key_in_channels,
            channels,
            num_convs=key_query_num_convs,
            use_conv_module=key_query_norm,
            conv_cfg=conv_cfg,
            norm_cfg=norm_cfg,
            act_cfg=act_cfg)
        if share_key_query:
            self.query_project = self.key_project
        else:
            self.query_project = self.build_project(
                query_in_channels,
                channels,
                num_convs=key_query_num_convs,
                use_conv_module=key_query_norm,
                conv_cfg=conv_cfg,
                norm_cfg=norm_cfg,
                act_cfg=act_cfg)
        self.value_project = self.build_project(
            key_in_channels,
            channels if with_out else out_channels,
            num_convs=value_out_num_convs,
            use_conv_module=value_out_norm,
            conv_cfg=conv_cfg,
            norm_cfg=norm_cfg,
            act_cfg=act_cfg)
        if with_out:
            self.out_project = self.build_project(
                channels,
                out_channels,
                num_convs=value_out_num_convs,
                use_conv_module=value_out_norm,
                conv_cfg=conv_cfg,
                norm_cfg=norm_cfg,
                act_cfg=act_cfg)
        else:
            self.out_project = None

        self.query_downsample = query_downsample
        self.key_downsample = key_downsample
        self.matmul_norm = matmul_norm

        self.init_weights()

    def init_weights(self):
        """Initialize weight of later layer."""
        if self.out_project is not None:
            if not isinstance(self.out_project, ConvModule):
                constant_init(self.out_project, 0)

    def build_project(self, in_channels, channels, num_convs, use_conv_module,
                      conv_cfg, norm_cfg, act_cfg):
        """Build projection layer for key/query/value/out."""
        if use_conv_module:
            convs = [
                ConvModule(
                    in_channels,
                    channels,
                    1,
                    conv_cfg=conv_cfg,
                    norm_cfg=norm_cfg,
                    act_cfg=act_cfg)
            ]
            for _ in range(num_convs - 1):
                convs.append(
                    ConvModule(
                        channels,
                        channels,
                        1,
                        conv_cfg=conv_cfg,
                        norm_cfg=norm_cfg,
                        act_cfg=act_cfg))
        else:
            convs = [nn.Conv2d(in_channels, channels, 1)]
            for _ in range(num_convs - 1):
                convs.append(nn.Conv2d(channels, channels, 1))
        if len(convs) > 1:
            convs = nn.Sequential(*convs)
        else:
            convs = convs[0]
        return convs

    def forward(self, query_feats, key_feats):
        """Forward function."""
        batch_size = query_feats.size(0)
        query = self.query_project(query_feats)
        if self.query_downsample is not None:
            query = self.query_downsample(query)
        query = query.reshape(*query.shape[:2], -1)
        query = query.permute(0, 2, 1).contiguous()

        key = self.key_project(key_feats)
        value = self.value_project(key_feats)
        if self.key_downsample is not None:
            key = self.key_downsample(key)
            value = self.key_downsample(value)
        key = key.reshape(*key.shape[:2], -1)
        value = value.reshape(*value.shape[:2], -1)
        value = value.permute(0, 2, 1).contiguous()

        sim_map = torch.matmul(query, key)
        if self.matmul_norm:
            sim_map = (self.channels**-.5) * sim_map
        sim_map = F.softmax(sim_map, dim=-1)

        context = torch.matmul(sim_map, value)
        context = context.permute(0, 2, 1).contiguous()
        context = context.reshape(batch_size, -1, *query_feats.shape[2:])
        if self.out_project is not None:
            context = self.out_project(context)
        return context