Image Segmentation
Transformers
PyTorch
upernet
Inference Endpoints
File size: 987 Bytes
b13b124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
from argparse import ArgumentParser

from mmseg.apis import inference_segmentor, init_segmentor, show_result_pyplot
from mmseg.core.evaluation import get_palette


def main():
    parser = ArgumentParser()
    parser.add_argument('img', help='Image file')
    parser.add_argument('config', help='Config file')
    parser.add_argument('checkpoint', help='Checkpoint file')
    parser.add_argument(
        '--device', default='cuda:0', help='Device used for inference')
    parser.add_argument(
        '--palette',
        default='cityscapes',
        help='Color palette used for segmentation map')
    args = parser.parse_args()

    # build the model from a config file and a checkpoint file
    model = init_segmentor(args.config, args.checkpoint, device=args.device)
    # test a single image
    result = inference_segmentor(model, args.img)
    # show the results
    show_result_pyplot(model, args.img, result, get_palette(args.palette))


if __name__ == '__main__':
    main()