Image Segmentation
Transformers
PyTorch
upernet
Inference Endpoints
File size: 9,228 Bytes
b13b124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import mmcv
import numpy as np


def intersect_and_union(pred_label,
                        label,
                        num_classes,
                        ignore_index,
                        label_map=dict(),
                        reduce_zero_label=False):
    """Calculate intersection and Union.

    Args:
        pred_label (ndarray): Prediction segmentation map.
        label (ndarray): Ground truth segmentation map.
        num_classes (int): Number of categories.
        ignore_index (int): Index that will be ignored in evaluation.
        label_map (dict): Mapping old labels to new labels. The parameter will
            work only when label is str. Default: dict().
        reduce_zero_label (bool): Wether ignore zero label. The parameter will
            work only when label is str. Default: False.

     Returns:
         ndarray: The intersection of prediction and ground truth histogram
             on all classes.
         ndarray: The union of prediction and ground truth histogram on all
             classes.
         ndarray: The prediction histogram on all classes.
         ndarray: The ground truth histogram on all classes.
    """

    if isinstance(pred_label, str):
        pred_label = np.load(pred_label)

    if isinstance(label, str):
        label = mmcv.imread(label, flag='unchanged', backend='pillow')
    # modify if custom classes
    if label_map is not None:
        for old_id, new_id in label_map.items():
            label[label == old_id] = new_id
    if reduce_zero_label:
        # avoid using underflow conversion
        label[label == 0] = 255
        label = label - 1
        label[label == 254] = 255

    mask = (label != ignore_index)
    pred_label = pred_label[mask]
    label = label[mask]

    intersect = pred_label[pred_label == label]
    area_intersect, _ = np.histogram(
        intersect, bins=np.arange(num_classes + 1))
    area_pred_label, _ = np.histogram(
        pred_label, bins=np.arange(num_classes + 1))
    area_label, _ = np.histogram(label, bins=np.arange(num_classes + 1))
    area_union = area_pred_label + area_label - area_intersect

    return area_intersect, area_union, area_pred_label, area_label


def total_intersect_and_union(results,
                              gt_seg_maps,
                              num_classes,
                              ignore_index,
                              label_map=dict(),
                              reduce_zero_label=False):
    """Calculate Total Intersection and Union.

    Args:
        results (list[ndarray]): List of prediction segmentation maps.
        gt_seg_maps (list[ndarray]): list of ground truth segmentation maps.
        num_classes (int): Number of categories.
        ignore_index (int): Index that will be ignored in evaluation.
        label_map (dict): Mapping old labels to new labels. Default: dict().
        reduce_zero_label (bool): Wether ignore zero label. Default: False.

     Returns:
         ndarray: The intersection of prediction and ground truth histogram
             on all classes.
         ndarray: The union of prediction and ground truth histogram on all
             classes.
         ndarray: The prediction histogram on all classes.
         ndarray: The ground truth histogram on all classes.
    """

    num_imgs = len(results)
    assert len(gt_seg_maps) == num_imgs
    total_area_intersect = np.zeros((num_classes, ), dtype=np.float)
    total_area_union = np.zeros((num_classes, ), dtype=np.float)
    total_area_pred_label = np.zeros((num_classes, ), dtype=np.float)
    total_area_label = np.zeros((num_classes, ), dtype=np.float)
    for i in range(num_imgs):
        area_intersect, area_union, area_pred_label, area_label = \
            intersect_and_union(results[i], gt_seg_maps[i], num_classes,
                                ignore_index, label_map, reduce_zero_label)
        total_area_intersect += area_intersect
        total_area_union += area_union
        total_area_pred_label += area_pred_label
        total_area_label += area_label
    return total_area_intersect, total_area_union, \
        total_area_pred_label, total_area_label


def mean_iou(results,
             gt_seg_maps,
             num_classes,
             ignore_index,
             nan_to_num=None,
             label_map=dict(),
             reduce_zero_label=False):
    """Calculate Mean Intersection and Union (mIoU)

    Args:
        results (list[ndarray]): List of prediction segmentation maps.
        gt_seg_maps (list[ndarray]): list of ground truth segmentation maps.
        num_classes (int): Number of categories.
        ignore_index (int): Index that will be ignored in evaluation.
        nan_to_num (int, optional): If specified, NaN values will be replaced
            by the numbers defined by the user. Default: None.
        label_map (dict): Mapping old labels to new labels. Default: dict().
        reduce_zero_label (bool): Wether ignore zero label. Default: False.

     Returns:
         float: Overall accuracy on all images.
         ndarray: Per category accuracy, shape (num_classes, ).
         ndarray: Per category IoU, shape (num_classes, ).
    """

    all_acc, acc, iou = eval_metrics(
        results=results,
        gt_seg_maps=gt_seg_maps,
        num_classes=num_classes,
        ignore_index=ignore_index,
        metrics=['mIoU'],
        nan_to_num=nan_to_num,
        label_map=label_map,
        reduce_zero_label=reduce_zero_label)
    return all_acc, acc, iou


def mean_dice(results,
              gt_seg_maps,
              num_classes,
              ignore_index,
              nan_to_num=None,
              label_map=dict(),
              reduce_zero_label=False):
    """Calculate Mean Dice (mDice)

    Args:
        results (list[ndarray]): List of prediction segmentation maps.
        gt_seg_maps (list[ndarray]): list of ground truth segmentation maps.
        num_classes (int): Number of categories.
        ignore_index (int): Index that will be ignored in evaluation.
        nan_to_num (int, optional): If specified, NaN values will be replaced
            by the numbers defined by the user. Default: None.
        label_map (dict): Mapping old labels to new labels. Default: dict().
        reduce_zero_label (bool): Wether ignore zero label. Default: False.

     Returns:
         float: Overall accuracy on all images.
         ndarray: Per category accuracy, shape (num_classes, ).
         ndarray: Per category dice, shape (num_classes, ).
    """

    all_acc, acc, dice = eval_metrics(
        results=results,
        gt_seg_maps=gt_seg_maps,
        num_classes=num_classes,
        ignore_index=ignore_index,
        metrics=['mDice'],
        nan_to_num=nan_to_num,
        label_map=label_map,
        reduce_zero_label=reduce_zero_label)
    return all_acc, acc, dice


def eval_metrics(results,
                 gt_seg_maps,
                 num_classes,
                 ignore_index,
                 metrics=['mIoU'],
                 nan_to_num=None,
                 label_map=dict(),
                 reduce_zero_label=False):
    """Calculate evaluation metrics
    Args:
        results (list[ndarray]): List of prediction segmentation maps.
        gt_seg_maps (list[ndarray]): list of ground truth segmentation maps.
        num_classes (int): Number of categories.
        ignore_index (int): Index that will be ignored in evaluation.
        metrics (list[str] | str): Metrics to be evaluated, 'mIoU' and 'mDice'.
        nan_to_num (int, optional): If specified, NaN values will be replaced
            by the numbers defined by the user. Default: None.
        label_map (dict): Mapping old labels to new labels. Default: dict().
        reduce_zero_label (bool): Wether ignore zero label. Default: False.
     Returns:
         float: Overall accuracy on all images.
         ndarray: Per category accuracy, shape (num_classes, ).
         ndarray: Per category evalution metrics, shape (num_classes, ).
    """

    if isinstance(metrics, str):
        metrics = [metrics]
    allowed_metrics = ['mIoU', 'mDice']
    if not set(metrics).issubset(set(allowed_metrics)):
        raise KeyError('metrics {} is not supported'.format(metrics))
    total_area_intersect, total_area_union, total_area_pred_label, \
        total_area_label = total_intersect_and_union(results, gt_seg_maps,
                                                     num_classes, ignore_index,
                                                     label_map,
                                                     reduce_zero_label)
    all_acc = total_area_intersect.sum() / total_area_label.sum()
    acc = total_area_intersect / total_area_label
    ret_metrics = [all_acc, acc]
    for metric in metrics:
        if metric == 'mIoU':
            iou = total_area_intersect / total_area_union
            ret_metrics.append(iou)
        elif metric == 'mDice':
            dice = 2 * total_area_intersect / (
                total_area_pred_label + total_area_label)
            ret_metrics.append(dice)
    if nan_to_num is not None:
        ret_metrics = [
            np.nan_to_num(metric, nan=nan_to_num) for metric in ret_metrics
        ]
    return ret_metrics