File size: 16,528 Bytes
b13b124 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial
import math
from .helpers import load_pretrained
from .layers import DropPath, to_2tuple, trunc_normal_
from ..builder import BACKBONES
from mmcv.cnn import build_norm_layer
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .9, 'interpolation': 'bicubic',
'mean': (0.485, 0.456, 0.406), 'std': (0.229, 0.224, 0.225),
'first_conv': '', 'classifier': 'head',
**kwargs
}
default_cfgs = {
# patch models
'vit_small_patch16_224': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/vit_small_p16_224-15ec54c9.pth',
),
'vit_base_patch16_224': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth',
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
#pretrained_finetune='pretrain/VIT_base_224_ReLeM.pth'
),
'vit_base_patch16_384': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_384-83fb41ba.pth',
input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0),
'vit_base_patch32_384': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p32_384-830016f5.pth',
input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0),
'vit_large_patch16_224': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_224-4ee7a4dc.pth',
input_size=(3, 224, 224), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0),
'vit_large_patch16_384': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_384-b3be5167.pth',
input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0),
'vit_large_patch32_384': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p32_384-9b920ba8.pth',
input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0),
'vit_base_patch16_224_in21k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch16_224_in21k-e5005f0a.pth',
num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
'vit_huge_patch16_224': _cfg(),
'vit_huge_patch32_384': _cfg(input_size=(3, 384, 384)),
# hybrid models
'vit_small_resnet26d_224': _cfg(),
'vit_small_resnet50d_s3_224': _cfg(),
'vit_base_resnet26d_224': _cfg(),
'vit_base_resnet50d_224': _cfg(),
'deit_base_distilled_path16_384': _cfg(
input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0,
pretrained_finetune='pretrained_model/deit_base_distilled_patch16_384.pth'
)
}
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
q, k, v = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x):
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class PatchEmbed(nn.Module):
""" Image to Patch Embedding
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, x):
B, C, H, W = x.shape
# FIXME look at relaxing size constraints
assert H == self.img_size[0] and W == self.img_size[1], \
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
# x = F.interpolate(x, size=2*x.shape[-1], mode='bilinear', align_corners=True)
x = self.proj(x)
return x
class HybridEmbed(nn.Module):
""" CNN Feature Map Embedding
Extract feature map from CNN, flatten, project to embedding dim.
"""
def __init__(self, backbone, img_size=224, feature_size=None, in_chans=3, embed_dim=768):
super().__init__()
assert isinstance(backbone, nn.Module)
img_size = to_2tuple(img_size)
self.img_size = img_size
self.backbone = backbone
if feature_size is None:
with torch.no_grad():
# FIXME this is hacky, but most reliable way of determining the exact dim of the output feature
# map for all networks, the feature metadata has reliable channel and stride info, but using
# stride to calc feature dim requires info about padding of each stage that isn't captured.
training = backbone.training
if training:
backbone.eval()
o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1]))[-1]
feature_size = o.shape[-2:]
feature_dim = o.shape[1]
backbone.train(training)
else:
feature_size = to_2tuple(feature_size)
feature_dim = self.backbone.feature_info.channels()[-1]
self.num_patches = feature_size[0] * feature_size[1]
self.proj = nn.Linear(feature_dim, embed_dim)
def forward(self, x):
x = self.backbone(x)[-1]
x = x.flatten(2).transpose(1, 2)
x = self.proj(x)
return x
class Conv_MLA(nn.Module):
def __init__(self, in_channels=1024, mla_channels=256, norm_cfg=None):
super(Conv_MLA, self).__init__()
self.mla_p2_1x1 = nn.Sequential(nn.Conv2d(in_channels, mla_channels, 1, bias=False), build_norm_layer(norm_cfg, mla_channels)[1], nn.ReLU())
self.mla_p3_1x1 = nn.Sequential(nn.Conv2d(in_channels, mla_channels, 1, bias=False), build_norm_layer(norm_cfg, mla_channels)[1], nn.ReLU())
self.mla_p4_1x1 = nn.Sequential(nn.Conv2d(in_channels, mla_channels, 1, bias=False), build_norm_layer(norm_cfg, mla_channels)[1], nn.ReLU())
self.mla_p5_1x1 = nn.Sequential(nn.Conv2d(in_channels, mla_channels, 1, bias=False), build_norm_layer(norm_cfg, mla_channels)[1], nn.ReLU())
self.mla_p2 = nn.Sequential(nn.Conv2d(mla_channels, mla_channels, 3, padding=1, bias=False), build_norm_layer(norm_cfg, mla_channels)[1], nn.ReLU())
self.mla_p3 = nn.Sequential(nn.Conv2d(mla_channels, mla_channels, 3, padding=1, bias=False), build_norm_layer(norm_cfg, mla_channels)[1], nn.ReLU())
self.mla_p4 = nn.Sequential(nn.Conv2d(mla_channels, mla_channels, 3, padding=1, bias=False), build_norm_layer(norm_cfg, mla_channels)[1], nn.ReLU())
self.mla_p5 = nn.Sequential(nn.Conv2d(mla_channels, mla_channels, 3, padding=1, bias=False), build_norm_layer(norm_cfg, mla_channels)[1], nn.ReLU())
def to_2D(self, x):
n, hw, c = x.shape
h=w = int(math.sqrt(hw))
x = x.transpose(1,2).reshape(n, c, h, w)
return x
def forward(self, res2, res3, res4, res5):
res2 = self.to_2D(res2)
res3 = self.to_2D(res3)
res4 = self.to_2D(res4)
res5 = self.to_2D(res5)
mla_p5_1x1 = self.mla_p5_1x1(res5)
mla_p4_1x1 = self.mla_p4_1x1(res4)
mla_p3_1x1 = self.mla_p3_1x1(res3)
mla_p2_1x1 = self.mla_p2_1x1(res2)
mla_p4_plus = mla_p5_1x1 + mla_p4_1x1
mla_p3_plus = mla_p4_plus + mla_p3_1x1
mla_p2_plus = mla_p3_plus + mla_p2_1x1
mla_p5 = self.mla_p5(mla_p5_1x1)
mla_p4 = self.mla_p4(mla_p4_plus)
mla_p3 = self.mla_p3(mla_p3_plus)
mla_p2 = self.mla_p2(mla_p2_plus)
return mla_p2, mla_p3, mla_p4, mla_p5
@BACKBONES.register_module()
class VIT_MLA(nn.Module):
""" Vision Transformer with support for patch or hybrid CNN input stage
"""
def __init__(self, model_name='vit_large_patch16_384', img_size=384, patch_size=16, in_chans=3, embed_dim=1024, depth=24,
num_heads=16, num_classes=19, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop_rate=0.1, attn_drop_rate=0.,
drop_path_rate=0., hybrid_backbone=None, norm_layer=partial(nn.LayerNorm, eps=1e-6), norm_cfg=None,
pos_embed_interp=False, random_init=False, align_corners=False, mla_channels=256,
mla_index=(5,11,17,23), pretrain_weights=None, **kwargs):
super(VIT_MLA, self).__init__(**kwargs)
self.model_name = model_name
self.img_size = img_size
self.patch_size = patch_size
self.in_chans = in_chans
self.embed_dim = embed_dim
self.depth = depth
self.num_heads = num_heads
self.num_classes = num_classes
self.mlp_ratio = mlp_ratio
self.qkv_bias = qkv_bias
self.qk_scale = qk_scale
self.drop_rate = drop_rate
self.attn_drop_rate = attn_drop_rate
self.drop_path_rate = drop_path_rate
self.hybrid_backbone = hybrid_backbone
self.norm_layer = norm_layer
self.norm_cfg = norm_cfg
self.pos_embed_interp = pos_embed_interp
self.random_init = random_init
self.align_corners = align_corners
self.mla_channels = mla_channels
self.mla_index = mla_index
self.pretrain_weights = pretrain_weights
self.num_stages = self.depth
self.out_indices= tuple(range(self.num_stages))
if self.hybrid_backbone is not None:
self.patch_embed = HybridEmbed(
self.hybrid_backbone, img_size=self.img_size, in_chans=self.in_chans, embed_dim=self.embed_dim)
else:
self.patch_embed = PatchEmbed(
img_size=self.img_size, patch_size=self.patch_size, in_chans=self.in_chans, embed_dim=self.embed_dim)
self.num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim))
self.pos_embed = nn.Parameter(torch.zeros(1, self.num_patches + 1, self.embed_dim))
self.pos_drop = nn.Dropout(p=self.drop_rate)
dpr = [x.item() for x in torch.linspace(0, self.drop_path_rate, self.depth)] # stochastic depth decay rule
self.blocks = nn.ModuleList([
Block(
dim=self.embed_dim, num_heads=self.num_heads, mlp_ratio=self.mlp_ratio, qkv_bias=self.qkv_bias, qk_scale=self.qk_scale,
drop=self.drop_rate, attn_drop=self.attn_drop_rate, drop_path=dpr[i], norm_layer=self.norm_layer)
for i in range(self.depth)])
self.mla = Conv_MLA(in_channels=self.embed_dim, mla_channels=self.mla_channels, norm_cfg=self.norm_cfg)
self.norm_0 = norm_layer(self.embed_dim)
self.norm_1 = norm_layer(self.embed_dim)
self.norm_2 = norm_layer(self.embed_dim)
self.norm_3 = norm_layer(self.embed_dim)
# NOTE as per official impl, we could have a pre-logits representation dense layer + tanh here
#self.repr = nn.Linear(embed_dim, representation_size)
#self.repr_act = nn.Tanh()
trunc_normal_(self.pos_embed, std=.02)
trunc_normal_(self.cls_token, std=.02)
# self.apply(self._init_weights)
def init_weights(self, pretrained=None):
# nn.init.normal_(self.pos_embed, std=0.02)
# nn.init.zeros_(self.cls_token)
for m in self.modules():
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
if self.random_init == False:
self.default_cfg = default_cfgs[self.model_name]
if not self.pretrain_weights == None:
self.default_cfg['pretrained_finetune'] = self.pretrain_weights
if self.model_name in ['vit_small_patch16_224', 'vit_base_patch16_224']:
load_pretrained(self, num_classes=self.num_classes, in_chans=self.in_chans, pos_embed_interp=self.pos_embed_interp, num_patches=self.patch_embed.num_patches, align_corners=self.align_corners, filter_fn=self._conv_filter)
else:
load_pretrained(self, num_classes=self.num_classes, in_chans=self.in_chans, pos_embed_interp=self.pos_embed_interp, num_patches=self.patch_embed.num_patches, align_corners=self.align_corners)
else:
print('Initialize weight randomly')
@property
def no_weight_decay(self):
return {'pos_embed', 'cls_token'}
def _conv_filter(self, state_dict, patch_size=16):
""" convert patch embedding weight from manual patchify + linear proj to conv"""
out_dict = {}
for k, v in state_dict.items():
if 'patch_embed.proj.weight' in k:
v = v.reshape((v.shape[0], 3, patch_size, patch_size))
out_dict[k] = v
return out_dict
def forward(self, x):
B = x.shape[0]
x = self.patch_embed(x)
x = x.flatten(2).transpose(1, 2)
cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
x = torch.cat((cls_tokens, x), dim=1)
x = x + self.pos_embed
x = x[:,1:]
x = self.pos_drop(x)
outs = []
for i, blk in enumerate(self.blocks):
x = blk(x)
if i in self.out_indices:
outs.append(x)
c6 = self.norm_0(outs[self.mla_index[0]])
c12 = self.norm_1(outs[self.mla_index[1]])
c18 = self.norm_2(outs[self.mla_index[2]])
c24 = self.norm_3(outs[self.mla_index[3]])
p6, p12, p18, p24 = self.mla(c6, c12, c18, c24)
return (p6, p12, p18, p24)
|