File size: 1,920 Bytes
b13b124 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
import warnings
import torch
import torch.nn as nn
import torch.nn.functional as F
def resize(input,
size=None,
scale_factor=None,
mode='nearest',
align_corners=None,
warning=True):
if warning:
if size is not None and align_corners:
input_h, input_w = tuple(int(x) for x in input.shape[2:])
output_h, output_w = tuple(int(x) for x in size)
if output_h > input_h or output_w > output_h:
if ((output_h > 1 and output_w > 1 and input_h > 1
and input_w > 1) and (output_h - 1) % (input_h - 1)
and (output_w - 1) % (input_w - 1)):
warnings.warn(
f'When align_corners={align_corners}, '
'the output would more aligned if '
f'input size {(input_h, input_w)} is `x+1` and '
f'out size {(output_h, output_w)} is `nx+1`')
if isinstance(size, torch.Size):
size = tuple(int(x) for x in size)
return F.interpolate(input, size, scale_factor, mode, align_corners)
class Upsample(nn.Module):
def __init__(self,
size=None,
scale_factor=None,
mode='nearest',
align_corners=None):
super(Upsample, self).__init__()
self.size = size
if isinstance(scale_factor, tuple):
self.scale_factor = tuple(float(factor) for factor in scale_factor)
else:
self.scale_factor = float(scale_factor) if scale_factor else None
self.mode = mode
self.align_corners = align_corners
def forward(self, x):
if not self.size:
size = [int(t * self.scale_factor) for t in x.shape[-2:]]
else:
size = self.size
return resize(x, size, None, self.mode, self.align_corners)
|