|
|
|
_base_ = './FoodSeg103.py' |
|
img_norm_cfg = dict( |
|
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) |
|
crop_size = (768, 768) |
|
train_pipeline = [ |
|
dict(type='LoadImageFromFile'), |
|
dict(type='LoadAnnotations'), |
|
dict(type='Resize', img_scale=(2049, 1025), ratio_range=(0.5, 2.0)), |
|
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), |
|
dict(type='RandomFlip', prob=0.5), |
|
dict(type='PhotoMetricDistortion'), |
|
dict(type='Normalize', **img_norm_cfg), |
|
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), |
|
dict(type='DefaultFormatBundle'), |
|
dict(type='Collect', keys=['img', 'gt_semantic_seg']), |
|
] |
|
test_pipeline = [ |
|
dict(type='LoadImageFromFile'), |
|
dict( |
|
type='MultiScaleFlipAug', |
|
img_scale=(2049, 1025), |
|
|
|
flip=False, |
|
transforms=[ |
|
dict(type='Resize', keep_ratio=True), |
|
dict(type='RandomFlip'), |
|
dict(type='Normalize', **img_norm_cfg), |
|
dict(type='ImageToTensor', keys=['img']), |
|
dict(type='Collect', keys=['img']), |
|
]) |
|
] |
|
data = dict( |
|
train=dict(pipeline=train_pipeline), |
|
val=dict(pipeline=test_pipeline), |
|
test=dict(pipeline=test_pipeline)) |
|
|