Image Segmentation
Transformers
PyTorch
upernet
Inference Endpoints
test2 / tests /test_data /test_loading.py
mccaly's picture
Upload 660 files
b13b124
raw
history blame
6.96 kB
import copy
import os.path as osp
import tempfile
import mmcv
import numpy as np
from mmseg.datasets.pipelines import LoadAnnotations, LoadImageFromFile
class TestLoading(object):
@classmethod
def setup_class(cls):
cls.data_prefix = osp.join(osp.dirname(__file__), '../data')
def test_load_img(self):
results = dict(
img_prefix=self.data_prefix, img_info=dict(filename='color.jpg'))
transform = LoadImageFromFile()
results = transform(copy.deepcopy(results))
assert results['filename'] == osp.join(self.data_prefix, 'color.jpg')
assert results['ori_filename'] == 'color.jpg'
assert results['img'].shape == (288, 512, 3)
assert results['img'].dtype == np.uint8
assert results['img_shape'] == (288, 512, 3)
assert results['ori_shape'] == (288, 512, 3)
assert results['pad_shape'] == (288, 512, 3)
assert results['scale_factor'] == 1.0
np.testing.assert_equal(results['img_norm_cfg']['mean'],
np.zeros(3, dtype=np.float32))
assert repr(transform) == transform.__class__.__name__ + \
"(to_float32=False,color_type='color',imdecode_backend='cv2')"
# no img_prefix
results = dict(
img_prefix=None, img_info=dict(filename='tests/data/color.jpg'))
transform = LoadImageFromFile()
results = transform(copy.deepcopy(results))
assert results['filename'] == 'tests/data/color.jpg'
assert results['ori_filename'] == 'tests/data/color.jpg'
assert results['img'].shape == (288, 512, 3)
# to_float32
transform = LoadImageFromFile(to_float32=True)
results = transform(copy.deepcopy(results))
assert results['img'].dtype == np.float32
# gray image
results = dict(
img_prefix=self.data_prefix, img_info=dict(filename='gray.jpg'))
transform = LoadImageFromFile()
results = transform(copy.deepcopy(results))
assert results['img'].shape == (288, 512, 3)
assert results['img'].dtype == np.uint8
transform = LoadImageFromFile(color_type='unchanged')
results = transform(copy.deepcopy(results))
assert results['img'].shape == (288, 512)
assert results['img'].dtype == np.uint8
np.testing.assert_equal(results['img_norm_cfg']['mean'],
np.zeros(1, dtype=np.float32))
def test_load_seg(self):
results = dict(
seg_prefix=self.data_prefix,
ann_info=dict(seg_map='seg.png'),
seg_fields=[])
transform = LoadAnnotations()
results = transform(copy.deepcopy(results))
assert results['seg_fields'] == ['gt_semantic_seg']
assert results['gt_semantic_seg'].shape == (288, 512)
assert results['gt_semantic_seg'].dtype == np.uint8
assert repr(transform) == transform.__class__.__name__ + \
"(reduce_zero_label=False,imdecode_backend='pillow')"
# no img_prefix
results = dict(
seg_prefix=None,
ann_info=dict(seg_map='tests/data/seg.png'),
seg_fields=[])
transform = LoadAnnotations()
results = transform(copy.deepcopy(results))
assert results['gt_semantic_seg'].shape == (288, 512)
assert results['gt_semantic_seg'].dtype == np.uint8
# reduce_zero_label
transform = LoadAnnotations(reduce_zero_label=True)
results = transform(copy.deepcopy(results))
assert results['gt_semantic_seg'].shape == (288, 512)
assert results['gt_semantic_seg'].dtype == np.uint8
# mmcv backend
results = dict(
seg_prefix=self.data_prefix,
ann_info=dict(seg_map='seg.png'),
seg_fields=[])
transform = LoadAnnotations(imdecode_backend='pillow')
results = transform(copy.deepcopy(results))
# this image is saved by PIL
assert results['gt_semantic_seg'].shape == (288, 512)
assert results['gt_semantic_seg'].dtype == np.uint8
def test_load_seg_custom_classes(self):
test_img = np.random.rand(10, 10)
test_gt = np.zeros_like(test_img)
test_gt[2:4, 2:4] = 1
test_gt[2:4, 6:8] = 2
test_gt[6:8, 2:4] = 3
test_gt[6:8, 6:8] = 4
tmp_dir = tempfile.TemporaryDirectory()
img_path = osp.join(tmp_dir.name, 'img.jpg')
gt_path = osp.join(tmp_dir.name, 'gt.png')
mmcv.imwrite(test_img, img_path)
mmcv.imwrite(test_gt, gt_path)
# test only train with label with id 3
results = dict(
img_info=dict(filename=img_path),
ann_info=dict(seg_map=gt_path),
label_map={
0: 0,
1: 0,
2: 0,
3: 1,
4: 0
},
seg_fields=[])
load_imgs = LoadImageFromFile()
results = load_imgs(copy.deepcopy(results))
load_anns = LoadAnnotations()
results = load_anns(copy.deepcopy(results))
gt_array = results['gt_semantic_seg']
true_mask = np.zeros_like(gt_array)
true_mask[6:8, 2:4] = 1
assert results['seg_fields'] == ['gt_semantic_seg']
assert gt_array.shape == (10, 10)
assert gt_array.dtype == np.uint8
np.testing.assert_array_equal(gt_array, true_mask)
# test only train with label with id 4 and 3
results = dict(
img_info=dict(filename=img_path),
ann_info=dict(seg_map=gt_path),
label_map={
0: 0,
1: 0,
2: 0,
3: 2,
4: 1
},
seg_fields=[])
load_imgs = LoadImageFromFile()
results = load_imgs(copy.deepcopy(results))
load_anns = LoadAnnotations()
results = load_anns(copy.deepcopy(results))
gt_array = results['gt_semantic_seg']
true_mask = np.zeros_like(gt_array)
true_mask[6:8, 2:4] = 2
true_mask[6:8, 6:8] = 1
assert results['seg_fields'] == ['gt_semantic_seg']
assert gt_array.shape == (10, 10)
assert gt_array.dtype == np.uint8
np.testing.assert_array_equal(gt_array, true_mask)
# test no custom classes
results = dict(
img_info=dict(filename=img_path),
ann_info=dict(seg_map=gt_path),
seg_fields=[])
load_imgs = LoadImageFromFile()
results = load_imgs(copy.deepcopy(results))
load_anns = LoadAnnotations()
results = load_anns(copy.deepcopy(results))
gt_array = results['gt_semantic_seg']
assert results['seg_fields'] == ['gt_semantic_seg']
assert gt_array.shape == (10, 10)
assert gt_array.dtype == np.uint8
np.testing.assert_array_equal(gt_array, test_gt)
tmp_dir.cleanup()