|
import copy |
|
import os.path as osp |
|
import tempfile |
|
|
|
import mmcv |
|
import numpy as np |
|
|
|
from mmseg.datasets.pipelines import LoadAnnotations, LoadImageFromFile |
|
|
|
|
|
class TestLoading(object): |
|
|
|
@classmethod |
|
def setup_class(cls): |
|
cls.data_prefix = osp.join(osp.dirname(__file__), '../data') |
|
|
|
def test_load_img(self): |
|
results = dict( |
|
img_prefix=self.data_prefix, img_info=dict(filename='color.jpg')) |
|
transform = LoadImageFromFile() |
|
results = transform(copy.deepcopy(results)) |
|
assert results['filename'] == osp.join(self.data_prefix, 'color.jpg') |
|
assert results['ori_filename'] == 'color.jpg' |
|
assert results['img'].shape == (288, 512, 3) |
|
assert results['img'].dtype == np.uint8 |
|
assert results['img_shape'] == (288, 512, 3) |
|
assert results['ori_shape'] == (288, 512, 3) |
|
assert results['pad_shape'] == (288, 512, 3) |
|
assert results['scale_factor'] == 1.0 |
|
np.testing.assert_equal(results['img_norm_cfg']['mean'], |
|
np.zeros(3, dtype=np.float32)) |
|
assert repr(transform) == transform.__class__.__name__ + \ |
|
"(to_float32=False,color_type='color',imdecode_backend='cv2')" |
|
|
|
|
|
results = dict( |
|
img_prefix=None, img_info=dict(filename='tests/data/color.jpg')) |
|
transform = LoadImageFromFile() |
|
results = transform(copy.deepcopy(results)) |
|
assert results['filename'] == 'tests/data/color.jpg' |
|
assert results['ori_filename'] == 'tests/data/color.jpg' |
|
assert results['img'].shape == (288, 512, 3) |
|
|
|
|
|
transform = LoadImageFromFile(to_float32=True) |
|
results = transform(copy.deepcopy(results)) |
|
assert results['img'].dtype == np.float32 |
|
|
|
|
|
results = dict( |
|
img_prefix=self.data_prefix, img_info=dict(filename='gray.jpg')) |
|
transform = LoadImageFromFile() |
|
results = transform(copy.deepcopy(results)) |
|
assert results['img'].shape == (288, 512, 3) |
|
assert results['img'].dtype == np.uint8 |
|
|
|
transform = LoadImageFromFile(color_type='unchanged') |
|
results = transform(copy.deepcopy(results)) |
|
assert results['img'].shape == (288, 512) |
|
assert results['img'].dtype == np.uint8 |
|
np.testing.assert_equal(results['img_norm_cfg']['mean'], |
|
np.zeros(1, dtype=np.float32)) |
|
|
|
def test_load_seg(self): |
|
results = dict( |
|
seg_prefix=self.data_prefix, |
|
ann_info=dict(seg_map='seg.png'), |
|
seg_fields=[]) |
|
transform = LoadAnnotations() |
|
results = transform(copy.deepcopy(results)) |
|
assert results['seg_fields'] == ['gt_semantic_seg'] |
|
assert results['gt_semantic_seg'].shape == (288, 512) |
|
assert results['gt_semantic_seg'].dtype == np.uint8 |
|
assert repr(transform) == transform.__class__.__name__ + \ |
|
"(reduce_zero_label=False,imdecode_backend='pillow')" |
|
|
|
|
|
results = dict( |
|
seg_prefix=None, |
|
ann_info=dict(seg_map='tests/data/seg.png'), |
|
seg_fields=[]) |
|
transform = LoadAnnotations() |
|
results = transform(copy.deepcopy(results)) |
|
assert results['gt_semantic_seg'].shape == (288, 512) |
|
assert results['gt_semantic_seg'].dtype == np.uint8 |
|
|
|
|
|
transform = LoadAnnotations(reduce_zero_label=True) |
|
results = transform(copy.deepcopy(results)) |
|
assert results['gt_semantic_seg'].shape == (288, 512) |
|
assert results['gt_semantic_seg'].dtype == np.uint8 |
|
|
|
|
|
results = dict( |
|
seg_prefix=self.data_prefix, |
|
ann_info=dict(seg_map='seg.png'), |
|
seg_fields=[]) |
|
transform = LoadAnnotations(imdecode_backend='pillow') |
|
results = transform(copy.deepcopy(results)) |
|
|
|
assert results['gt_semantic_seg'].shape == (288, 512) |
|
assert results['gt_semantic_seg'].dtype == np.uint8 |
|
|
|
def test_load_seg_custom_classes(self): |
|
|
|
test_img = np.random.rand(10, 10) |
|
test_gt = np.zeros_like(test_img) |
|
test_gt[2:4, 2:4] = 1 |
|
test_gt[2:4, 6:8] = 2 |
|
test_gt[6:8, 2:4] = 3 |
|
test_gt[6:8, 6:8] = 4 |
|
|
|
tmp_dir = tempfile.TemporaryDirectory() |
|
img_path = osp.join(tmp_dir.name, 'img.jpg') |
|
gt_path = osp.join(tmp_dir.name, 'gt.png') |
|
|
|
mmcv.imwrite(test_img, img_path) |
|
mmcv.imwrite(test_gt, gt_path) |
|
|
|
|
|
results = dict( |
|
img_info=dict(filename=img_path), |
|
ann_info=dict(seg_map=gt_path), |
|
label_map={ |
|
0: 0, |
|
1: 0, |
|
2: 0, |
|
3: 1, |
|
4: 0 |
|
}, |
|
seg_fields=[]) |
|
|
|
load_imgs = LoadImageFromFile() |
|
results = load_imgs(copy.deepcopy(results)) |
|
|
|
load_anns = LoadAnnotations() |
|
results = load_anns(copy.deepcopy(results)) |
|
|
|
gt_array = results['gt_semantic_seg'] |
|
|
|
true_mask = np.zeros_like(gt_array) |
|
true_mask[6:8, 2:4] = 1 |
|
|
|
assert results['seg_fields'] == ['gt_semantic_seg'] |
|
assert gt_array.shape == (10, 10) |
|
assert gt_array.dtype == np.uint8 |
|
np.testing.assert_array_equal(gt_array, true_mask) |
|
|
|
|
|
results = dict( |
|
img_info=dict(filename=img_path), |
|
ann_info=dict(seg_map=gt_path), |
|
label_map={ |
|
0: 0, |
|
1: 0, |
|
2: 0, |
|
3: 2, |
|
4: 1 |
|
}, |
|
seg_fields=[]) |
|
|
|
load_imgs = LoadImageFromFile() |
|
results = load_imgs(copy.deepcopy(results)) |
|
|
|
load_anns = LoadAnnotations() |
|
results = load_anns(copy.deepcopy(results)) |
|
|
|
gt_array = results['gt_semantic_seg'] |
|
|
|
true_mask = np.zeros_like(gt_array) |
|
true_mask[6:8, 2:4] = 2 |
|
true_mask[6:8, 6:8] = 1 |
|
|
|
assert results['seg_fields'] == ['gt_semantic_seg'] |
|
assert gt_array.shape == (10, 10) |
|
assert gt_array.dtype == np.uint8 |
|
np.testing.assert_array_equal(gt_array, true_mask) |
|
|
|
|
|
results = dict( |
|
img_info=dict(filename=img_path), |
|
ann_info=dict(seg_map=gt_path), |
|
seg_fields=[]) |
|
|
|
load_imgs = LoadImageFromFile() |
|
results = load_imgs(copy.deepcopy(results)) |
|
|
|
load_anns = LoadAnnotations() |
|
results = load_anns(copy.deepcopy(results)) |
|
|
|
gt_array = results['gt_semantic_seg'] |
|
|
|
assert results['seg_fields'] == ['gt_semantic_seg'] |
|
assert gt_array.shape == (10, 10) |
|
assert gt_array.dtype == np.uint8 |
|
np.testing.assert_array_equal(gt_array, test_gt) |
|
|
|
tmp_dir.cleanup() |
|
|