|
import argparse |
|
import os |
|
import os.path as osp |
|
import tempfile |
|
import zipfile |
|
|
|
import mmcv |
|
|
|
CHASE_DB1_LEN = 28 * 3 |
|
TRAINING_LEN = 60 |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser( |
|
description='Convert CHASE_DB1 dataset to mmsegmentation format') |
|
parser.add_argument('dataset_path', help='path of CHASEDB1.zip') |
|
parser.add_argument('--tmp_dir', help='path of the temporary directory') |
|
parser.add_argument('-o', '--out_dir', help='output path') |
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
dataset_path = args.dataset_path |
|
if args.out_dir is None: |
|
out_dir = osp.join('data', 'CHASE_DB1') |
|
else: |
|
out_dir = args.out_dir |
|
|
|
print('Making directories...') |
|
mmcv.mkdir_or_exist(out_dir) |
|
mmcv.mkdir_or_exist(osp.join(out_dir, 'images')) |
|
mmcv.mkdir_or_exist(osp.join(out_dir, 'images', 'training')) |
|
mmcv.mkdir_or_exist(osp.join(out_dir, 'images', 'validation')) |
|
mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations')) |
|
mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations', 'training')) |
|
mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations', 'validation')) |
|
|
|
with tempfile.TemporaryDirectory(dir=args.tmp_dir) as tmp_dir: |
|
print('Extracting CHASEDB1.zip...') |
|
zip_file = zipfile.ZipFile(dataset_path) |
|
zip_file.extractall(tmp_dir) |
|
|
|
print('Generating training dataset...') |
|
|
|
assert len(os.listdir(tmp_dir)) == CHASE_DB1_LEN, \ |
|
'len(os.listdir(tmp_dir)) != {}'.format(CHASE_DB1_LEN) |
|
|
|
for img_name in sorted(os.listdir(tmp_dir))[:TRAINING_LEN]: |
|
img = mmcv.imread(osp.join(tmp_dir, img_name)) |
|
if osp.splitext(img_name)[1] == '.jpg': |
|
mmcv.imwrite( |
|
img, |
|
osp.join(out_dir, 'images', 'training', |
|
osp.splitext(img_name)[0] + '.png')) |
|
else: |
|
|
|
|
|
|
|
|
|
|
|
mmcv.imwrite( |
|
img[:, :, 0] // 128, |
|
osp.join(out_dir, 'annotations', 'training', |
|
osp.splitext(img_name)[0] + '.png')) |
|
|
|
for img_name in sorted(os.listdir(tmp_dir))[TRAINING_LEN:]: |
|
img = mmcv.imread(osp.join(tmp_dir, img_name)) |
|
if osp.splitext(img_name)[1] == '.jpg': |
|
mmcv.imwrite( |
|
img, |
|
osp.join(out_dir, 'images', 'validation', |
|
osp.splitext(img_name)[0] + '.png')) |
|
else: |
|
mmcv.imwrite( |
|
img[:, :, 0] // 128, |
|
osp.join(out_dir, 'annotations', 'validation', |
|
osp.splitext(img_name)[0] + '.png')) |
|
|
|
print('Removing the temporary files...') |
|
|
|
print('Done!') |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|