|
import argparse |
|
import os.path as osp |
|
from functools import partial |
|
|
|
import mmcv |
|
import numpy as np |
|
from detail import Detail |
|
from PIL import Image |
|
|
|
_mapping = np.sort( |
|
np.array([ |
|
0, 2, 259, 260, 415, 324, 9, 258, 144, 18, 19, 22, 23, 397, 25, 284, |
|
158, 159, 416, 33, 162, 420, 454, 295, 296, 427, 44, 45, 46, 308, 59, |
|
440, 445, 31, 232, 65, 354, 424, 68, 326, 72, 458, 34, 207, 80, 355, |
|
85, 347, 220, 349, 360, 98, 187, 104, 105, 366, 189, 368, 113, 115 |
|
])) |
|
_key = np.array(range(len(_mapping))).astype('uint8') |
|
|
|
|
|
def generate_labels(img_id, detail, out_dir): |
|
|
|
def _class_to_index(mask, _mapping, _key): |
|
|
|
values = np.unique(mask) |
|
for i in range(len(values)): |
|
assert (values[i] in _mapping) |
|
index = np.digitize(mask.ravel(), _mapping, right=True) |
|
return _key[index].reshape(mask.shape) |
|
|
|
mask = Image.fromarray( |
|
_class_to_index(detail.getMask(img_id), _mapping=_mapping, _key=_key)) |
|
filename = img_id['file_name'] |
|
mask.save(osp.join(out_dir, filename.replace('jpg', 'png'))) |
|
return osp.splitext(osp.basename(filename))[0] |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser( |
|
description='Convert PASCAL VOC annotations to mmsegmentation format') |
|
parser.add_argument('devkit_path', help='pascal voc devkit path') |
|
parser.add_argument('json_path', help='annoation json filepath') |
|
parser.add_argument('-o', '--out_dir', help='output path') |
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
devkit_path = args.devkit_path |
|
if args.out_dir is None: |
|
out_dir = osp.join(devkit_path, 'VOC2010', 'SegmentationClassContext') |
|
else: |
|
out_dir = args.out_dir |
|
json_path = args.json_path |
|
mmcv.mkdir_or_exist(out_dir) |
|
img_dir = osp.join(devkit_path, 'VOC2010', 'JPEGImages') |
|
|
|
train_detail = Detail(json_path, img_dir, 'train') |
|
train_ids = train_detail.getImgs() |
|
|
|
val_detail = Detail(json_path, img_dir, 'val') |
|
val_ids = val_detail.getImgs() |
|
|
|
mmcv.mkdir_or_exist( |
|
osp.join(devkit_path, 'VOC2010/ImageSets/SegmentationContext')) |
|
|
|
train_list = mmcv.track_progress( |
|
partial(generate_labels, detail=train_detail, out_dir=out_dir), |
|
train_ids) |
|
with open( |
|
osp.join(devkit_path, 'VOC2010/ImageSets/SegmentationContext', |
|
'train.txt'), 'w') as f: |
|
f.writelines(line + '\n' for line in sorted(train_list)) |
|
|
|
val_list = mmcv.track_progress( |
|
partial(generate_labels, detail=val_detail, out_dir=out_dir), val_ids) |
|
with open( |
|
osp.join(devkit_path, 'VOC2010/ImageSets/SegmentationContext', |
|
'val.txt'), 'w') as f: |
|
f.writelines(line + '\n' for line in sorted(val_list)) |
|
|
|
print('Done!') |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|