|
import argparse |
|
import os |
|
|
|
import mmcv |
|
import torch |
|
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel |
|
from mmcv.runner import get_dist_info, init_dist, load_checkpoint |
|
from mmcv.utils import DictAction |
|
|
|
from mmseg.apis import multi_gpu_test, single_gpu_test |
|
from mmseg.datasets import build_dataloader, build_dataset |
|
from mmseg.models import build_segmentor |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser( |
|
description='mmseg test (and eval) a model') |
|
parser.add_argument('config', help='test config file path') |
|
parser.add_argument('checkpoint', help='checkpoint file') |
|
parser.add_argument( |
|
'--aug-test', action='store_true', help='Use Flip and Multi scale aug') |
|
parser.add_argument('--out', help='output result file in pickle format') |
|
parser.add_argument( |
|
'--format-only', |
|
action='store_true', |
|
help='Format the output results without perform evaluation. It is' |
|
'useful when you want to format the result to a specific format and ' |
|
'submit it to the test server') |
|
parser.add_argument( |
|
'--eval', |
|
type=str, |
|
nargs='+', |
|
help='evaluation metrics, which depends on the dataset, e.g., "mIoU"' |
|
' for generic datasets, and "cityscapes" for Cityscapes') |
|
parser.add_argument('--show', action='store_true', help='show results') |
|
parser.add_argument( |
|
'--show-dir', help='directory where painted images will be saved') |
|
parser.add_argument( |
|
'--gpu-collect', |
|
action='store_true', |
|
help='whether to use gpu to collect results.') |
|
parser.add_argument( |
|
'--tmpdir', |
|
help='tmp directory used for collecting results from multiple ' |
|
'workers, available when gpu_collect is not specified') |
|
parser.add_argument( |
|
'--options', nargs='+', action=DictAction, help='custom options') |
|
parser.add_argument( |
|
'--eval-options', |
|
nargs='+', |
|
action=DictAction, |
|
help='custom options for evaluation') |
|
parser.add_argument( |
|
'--launcher', |
|
choices=['none', 'pytorch', 'slurm', 'mpi'], |
|
default='none', |
|
help='job launcher') |
|
parser.add_argument('--local_rank', type=int, default=0) |
|
args = parser.parse_args() |
|
if 'LOCAL_RANK' not in os.environ: |
|
os.environ['LOCAL_RANK'] = str(args.local_rank) |
|
return args |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
|
|
assert args.out or args.eval or args.format_only or args.show \ |
|
or args.show_dir, \ |
|
('Please specify at least one operation (save/eval/format/show the ' |
|
'results / save the results) with the argument "--out", "--eval"' |
|
', "--format-only", "--show" or "--show-dir"') |
|
|
|
if args.eval and args.format_only: |
|
raise ValueError('--eval and --format_only cannot be both specified') |
|
|
|
if args.out is not None and not args.out.endswith(('.pkl', '.pickle')): |
|
raise ValueError('The output file must be a pkl file.') |
|
|
|
cfg = mmcv.Config.fromfile(args.config) |
|
if args.options is not None: |
|
cfg.merge_from_dict(args.options) |
|
|
|
if cfg.get('cudnn_benchmark', False): |
|
torch.backends.cudnn.benchmark = True |
|
if args.aug_test: |
|
|
|
cfg.data.test.pipeline[1].img_ratios = [ |
|
0.5, 0.75, 1.0, 1.25, 1.5, 1.75 |
|
] |
|
cfg.data.test.pipeline[1].flip = True |
|
cfg.model.pretrained = None |
|
cfg.data.test.test_mode = True |
|
|
|
|
|
if args.launcher == 'none': |
|
distributed = False |
|
else: |
|
distributed = True |
|
init_dist(args.launcher, **cfg.dist_params) |
|
|
|
|
|
|
|
dataset = build_dataset(cfg.data.test) |
|
data_loader = build_dataloader( |
|
dataset, |
|
samples_per_gpu=1, |
|
workers_per_gpu=cfg.data.workers_per_gpu, |
|
dist=distributed, |
|
shuffle=False) |
|
|
|
|
|
cfg.model.train_cfg = None |
|
model = build_segmentor(cfg.model, test_cfg=cfg.get('test_cfg')) |
|
checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu') |
|
model.CLASSES = checkpoint['meta']['CLASSES'] |
|
model.PALETTE = checkpoint['meta']['PALETTE'] |
|
|
|
efficient_test = False |
|
if args.eval_options is not None: |
|
efficient_test = args.eval_options.get('efficient_test', False) |
|
|
|
if not distributed: |
|
model = MMDataParallel(model, device_ids=[0]) |
|
outputs = single_gpu_test(model, data_loader, args.show, args.show_dir, |
|
efficient_test) |
|
else: |
|
model = MMDistributedDataParallel( |
|
model.cuda(), |
|
device_ids=[torch.cuda.current_device()], |
|
broadcast_buffers=False) |
|
outputs = multi_gpu_test(model, data_loader, args.tmpdir, |
|
args.gpu_collect, efficient_test) |
|
|
|
rank, _ = get_dist_info() |
|
if rank == 0: |
|
if args.out: |
|
print(f'\nwriting results to {args.out}') |
|
mmcv.dump(outputs, args.out) |
|
kwargs = {} if args.eval_options is None else args.eval_options |
|
if args.format_only: |
|
dataset.format_results(outputs, **kwargs) |
|
if args.eval: |
|
dataset.evaluate(outputs, args.eval, **kwargs) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|