|
import argparse |
|
import copy |
|
import os |
|
import os.path as osp |
|
import time |
|
|
|
import mmcv |
|
import torch |
|
from mmcv.runner import init_dist |
|
from mmcv.utils import Config, DictAction, get_git_hash |
|
|
|
from mmseg import __version__ |
|
from mmseg.apis import set_random_seed, train_segmentor |
|
from mmseg.datasets import build_dataset |
|
from mmseg.models import build_segmentor |
|
from mmseg.utils import collect_env, get_root_logger |
|
|
|
|
|
|
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description='Train a segmentor') |
|
parser.add_argument('--config',default="/SEG/mmsegmentation/configs/ccnet/ccnet_r101-d8_512x1024_40k_Recipe1M.py", help='train config file path') |
|
parser.add_argument('--work-dir',default="/SEG/mmsegmentation/checkpoints/ccnet/recipe1m_train2", help='the dir to save logs and models') |
|
parser.add_argument( |
|
'--load-from', help='the checkpoint file to load weights from') |
|
parser.add_argument( |
|
'--resume-from', help='the checkpoint file to resume from') |
|
parser.add_argument( |
|
'--no-validate', |
|
action='store_true', |
|
help='whether not to evaluate the checkpoint during training') |
|
group_gpus = parser.add_mutually_exclusive_group() |
|
group_gpus.add_argument( |
|
'--gpus', |
|
type=int, |
|
help='number of gpus to use ' |
|
'(only applicable to non-distributed training)') |
|
group_gpus.add_argument( |
|
'--gpu-ids', |
|
type=int, |
|
nargs='+', |
|
help='ids of gpus to use ' |
|
'(only applicable to non-distributed training)') |
|
parser.add_argument('--seed', type=int, default=None, help='random seed') |
|
parser.add_argument( |
|
'--deterministic', |
|
action='store_true', |
|
help='whether to set deterministic options for CUDNN backend.') |
|
parser.add_argument( |
|
'--options', nargs='+', action=DictAction, help='custom options') |
|
parser.add_argument( |
|
'--launcher', |
|
choices=['none', 'pytorch', 'slurm', 'mpi'], |
|
default='none', |
|
help='job launcher') |
|
parser.add_argument('--local_rank', type=int, default=0) |
|
args = parser.parse_args() |
|
if 'LOCAL_RANK' not in os.environ: |
|
os.environ['LOCAL_RANK'] = str(args.local_rank) |
|
|
|
return args |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
|
|
cfg = Config.fromfile(args.config) |
|
if args.options is not None: |
|
cfg.merge_from_dict(args.options) |
|
|
|
if cfg.get('cudnn_benchmark', False): |
|
torch.backends.cudnn.benchmark = True |
|
|
|
|
|
if args.work_dir is not None: |
|
|
|
cfg.work_dir = args.work_dir |
|
elif cfg.get('work_dir', None) is None: |
|
|
|
cfg.work_dir = osp.join('./work_dirs', |
|
osp.splitext(osp.basename(args.config))[0]) |
|
if args.load_from is not None: |
|
cfg.load_from = args.load_from |
|
if args.resume_from is not None: |
|
cfg.resume_from = args.resume_from |
|
if args.gpu_ids is not None: |
|
cfg.gpu_ids = args.gpu_ids |
|
else: |
|
cfg.gpu_ids = range(1) if args.gpus is None else range(args.gpus) |
|
|
|
|
|
if args.launcher == 'none': |
|
distributed = False |
|
else: |
|
distributed = True |
|
init_dist(args.launcher, **cfg.dist_params) |
|
|
|
|
|
mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir)) |
|
|
|
cfg.dump(osp.join(cfg.work_dir, osp.basename(args.config))) |
|
|
|
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) |
|
log_file = osp.join(cfg.work_dir, f'{timestamp}.log') |
|
logger = get_root_logger(log_file=log_file, log_level=cfg.log_level) |
|
|
|
|
|
|
|
meta = dict() |
|
|
|
env_info_dict = collect_env() |
|
env_info = '\n'.join([f'{k}: {v}' for k, v in env_info_dict.items()]) |
|
dash_line = '-' * 60 + '\n' |
|
logger.info('Environment info:\n' + dash_line + env_info + '\n' + |
|
dash_line) |
|
meta['env_info'] = env_info |
|
|
|
|
|
logger.info(f'Distributed training: {distributed}') |
|
logger.info(f'Config:\n{cfg.pretty_text}') |
|
|
|
|
|
if args.seed is not None: |
|
logger.info(f'Set random seed to {args.seed}, deterministic: ' |
|
f'{args.deterministic}') |
|
set_random_seed(args.seed, deterministic=args.deterministic) |
|
cfg.seed = args.seed |
|
meta['seed'] = args.seed |
|
meta['exp_name'] = osp.basename(args.config) |
|
|
|
model = build_segmentor( |
|
cfg.model, |
|
train_cfg=cfg.get('train_cfg'), |
|
test_cfg=cfg.get('test_cfg')) |
|
|
|
logger.info(model) |
|
|
|
datasets = [build_dataset(cfg.data.train)] |
|
if len(cfg.workflow) == 2: |
|
val_dataset = copy.deepcopy(cfg.data.val) |
|
val_dataset.pipeline = cfg.data.train.pipeline |
|
datasets.append(build_dataset(val_dataset)) |
|
if cfg.checkpoint_config is not None: |
|
|
|
|
|
cfg.checkpoint_config.meta = dict( |
|
mmseg_version=f'{__version__}+{get_git_hash()[:7]}', |
|
config=cfg.pretty_text, |
|
CLASSES=datasets[0].CLASSES, |
|
PALETTE=datasets[0].PALETTE) |
|
|
|
model.CLASSES = datasets[0].CLASSES |
|
|
|
train_segmentor( |
|
model, |
|
datasets, |
|
cfg, |
|
distributed=distributed, |
|
validate=(not args.no_validate), |
|
timestamp=timestamp, |
|
meta=meta) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|