|
_base_ = [ |
|
'../_base_/models/cgnet.py', '../_base_/datasets/cityscapes.py', |
|
'../_base_/default_runtime.py' |
|
] |
|
|
|
|
|
optimizer = dict(type='Adam', lr=0.001, eps=1e-08, weight_decay=0.0005) |
|
optimizer_config = dict() |
|
|
|
lr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False) |
|
|
|
total_iters = 60000 |
|
checkpoint_config = dict(by_epoch=False, interval=4000) |
|
evaluation = dict(interval=4000, metric='mIoU') |
|
|
|
img_norm_cfg = dict( |
|
mean=[72.39239876, 82.90891754, 73.15835921], std=[1, 1, 1], to_rgb=True) |
|
crop_size = (680, 680) |
|
train_pipeline = [ |
|
dict(type='LoadImageFromFile'), |
|
dict(type='LoadAnnotations'), |
|
dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)), |
|
dict(type='RandomCrop', crop_size=crop_size), |
|
dict(type='RandomFlip', flip_ratio=0.5), |
|
dict(type='Normalize', **img_norm_cfg), |
|
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), |
|
dict(type='DefaultFormatBundle'), |
|
dict(type='Collect', keys=['img', 'gt_semantic_seg']), |
|
] |
|
test_pipeline = [ |
|
dict(type='LoadImageFromFile'), |
|
dict( |
|
type='MultiScaleFlipAug', |
|
img_scale=(2048, 1024), |
|
|
|
flip=False, |
|
transforms=[ |
|
dict(type='Resize', keep_ratio=True), |
|
dict(type='RandomFlip'), |
|
dict(type='Normalize', **img_norm_cfg), |
|
dict(type='ImageToTensor', keys=['img']), |
|
dict(type='Collect', keys=['img']), |
|
]) |
|
] |
|
data = dict( |
|
samples_per_gpu=8, |
|
workers_per_gpu=8, |
|
train=dict(pipeline=train_pipeline), |
|
val=dict(pipeline=test_pipeline), |
|
test=dict(pipeline=test_pipeline)) |
|
|