Image Segmentation
Transformers
PyTorch
upernet
Inference Endpoints
test2 / tests /test_data /test_dataset_builder.py
mccaly's picture
Upload 660 files
b13b124
raw
history blame
6.09 kB
import math
import os.path as osp
import pytest
from torch.utils.data import (DistributedSampler, RandomSampler,
SequentialSampler)
from mmseg.datasets import (DATASETS, ConcatDataset, build_dataloader,
build_dataset)
@DATASETS.register_module()
class ToyDataset(object):
def __init__(self, cnt=0):
self.cnt = cnt
def __item__(self, idx):
return idx
def __len__(self):
return 100
def test_build_dataset():
cfg = dict(type='ToyDataset')
dataset = build_dataset(cfg)
assert isinstance(dataset, ToyDataset)
assert dataset.cnt == 0
dataset = build_dataset(cfg, default_args=dict(cnt=1))
assert isinstance(dataset, ToyDataset)
assert dataset.cnt == 1
data_root = osp.join(osp.dirname(__file__), '../data/pseudo_dataset')
img_dir = 'imgs/'
ann_dir = 'gts/'
# We use same dir twice for simplicity
# with ann_dir
cfg = dict(
type='CustomDataset',
pipeline=[],
data_root=data_root,
img_dir=[img_dir, img_dir],
ann_dir=[ann_dir, ann_dir])
dataset = build_dataset(cfg)
assert isinstance(dataset, ConcatDataset)
assert len(dataset) == 10
# with ann_dir, split
cfg = dict(
type='CustomDataset',
pipeline=[],
data_root=data_root,
img_dir=img_dir,
ann_dir=ann_dir,
split=['splits/train.txt', 'splits/val.txt'])
dataset = build_dataset(cfg)
assert isinstance(dataset, ConcatDataset)
assert len(dataset) == 5
# with ann_dir, split
cfg = dict(
type='CustomDataset',
pipeline=[],
data_root=data_root,
img_dir=img_dir,
ann_dir=[ann_dir, ann_dir],
split=['splits/train.txt', 'splits/val.txt'])
dataset = build_dataset(cfg)
assert isinstance(dataset, ConcatDataset)
assert len(dataset) == 5
# test mode
cfg = dict(
type='CustomDataset',
pipeline=[],
data_root=data_root,
img_dir=[img_dir, img_dir],
test_mode=True)
dataset = build_dataset(cfg)
assert isinstance(dataset, ConcatDataset)
assert len(dataset) == 10
# test mode with splits
cfg = dict(
type='CustomDataset',
pipeline=[],
data_root=data_root,
img_dir=[img_dir, img_dir],
split=['splits/val.txt', 'splits/val.txt'],
test_mode=True)
dataset = build_dataset(cfg)
assert isinstance(dataset, ConcatDataset)
assert len(dataset) == 2
# len(ann_dir) should be zero or len(img_dir) when len(img_dir) > 1
with pytest.raises(AssertionError):
cfg = dict(
type='CustomDataset',
pipeline=[],
data_root=data_root,
img_dir=[img_dir, img_dir],
ann_dir=[ann_dir, ann_dir, ann_dir])
build_dataset(cfg)
# len(splits) should be zero or len(img_dir) when len(img_dir) > 1
with pytest.raises(AssertionError):
cfg = dict(
type='CustomDataset',
pipeline=[],
data_root=data_root,
img_dir=[img_dir, img_dir],
split=['splits/val.txt', 'splits/val.txt', 'splits/val.txt'])
build_dataset(cfg)
# len(splits) == len(ann_dir) when only len(img_dir) == 1 and len(
# ann_dir) > 1
with pytest.raises(AssertionError):
cfg = dict(
type='CustomDataset',
pipeline=[],
data_root=data_root,
img_dir=img_dir,
ann_dir=[ann_dir, ann_dir],
split=['splits/val.txt', 'splits/val.txt', 'splits/val.txt'])
build_dataset(cfg)
def test_build_dataloader():
dataset = ToyDataset()
samples_per_gpu = 3
# dist=True, shuffle=True, 1GPU
dataloader = build_dataloader(
dataset, samples_per_gpu=samples_per_gpu, workers_per_gpu=2)
assert dataloader.batch_size == samples_per_gpu
assert len(dataloader) == int(math.ceil(len(dataset) / samples_per_gpu))
assert isinstance(dataloader.sampler, DistributedSampler)
assert dataloader.sampler.shuffle
# dist=True, shuffle=False, 1GPU
dataloader = build_dataloader(
dataset,
samples_per_gpu=samples_per_gpu,
workers_per_gpu=2,
shuffle=False)
assert dataloader.batch_size == samples_per_gpu
assert len(dataloader) == int(math.ceil(len(dataset) / samples_per_gpu))
assert isinstance(dataloader.sampler, DistributedSampler)
assert not dataloader.sampler.shuffle
# dist=True, shuffle=True, 8GPU
dataloader = build_dataloader(
dataset,
samples_per_gpu=samples_per_gpu,
workers_per_gpu=2,
num_gpus=8)
assert dataloader.batch_size == samples_per_gpu
assert len(dataloader) == int(math.ceil(len(dataset) / samples_per_gpu))
assert dataloader.num_workers == 2
# dist=False, shuffle=True, 1GPU
dataloader = build_dataloader(
dataset,
samples_per_gpu=samples_per_gpu,
workers_per_gpu=2,
dist=False)
assert dataloader.batch_size == samples_per_gpu
assert len(dataloader) == int(math.ceil(len(dataset) / samples_per_gpu))
assert isinstance(dataloader.sampler, RandomSampler)
assert dataloader.num_workers == 2
# dist=False, shuffle=False, 1GPU
dataloader = build_dataloader(
dataset,
samples_per_gpu=3,
workers_per_gpu=2,
shuffle=False,
dist=False)
assert dataloader.batch_size == samples_per_gpu
assert len(dataloader) == int(math.ceil(len(dataset) / samples_per_gpu))
assert isinstance(dataloader.sampler, SequentialSampler)
assert dataloader.num_workers == 2
# dist=False, shuffle=True, 8GPU
dataloader = build_dataloader(
dataset, samples_per_gpu=3, workers_per_gpu=2, num_gpus=8, dist=False)
assert dataloader.batch_size == samples_per_gpu * 8
assert len(dataloader) == int(
math.ceil(len(dataset) / samples_per_gpu / 8))
assert isinstance(dataloader.sampler, RandomSampler)
assert dataloader.num_workers == 16