|
_base_ = [ |
|
'../_base_/models/setr_naive_pup.py', |
|
'../_base_/datasets/FoodSeg103_768x768.py', '../_base_/default_runtime.py', |
|
'../_base_/schedules/schedule_80k.py' |
|
] |
|
norm_cfg = dict(type='SyncBN', requires_grad=True) |
|
model = dict( |
|
backbone=dict( |
|
img_size=768, |
|
model_name='vit_base_patch16_224', |
|
pretrain_weights='pretrained_model/VIT_base_224_ReLeM.pth', |
|
embed_dim=768, |
|
depth=12, |
|
num_heads=12, |
|
pos_embed_interp=True, |
|
align_corners=False, |
|
num_classes=104, |
|
drop_rate=0. |
|
), |
|
decode_head=dict( |
|
img_size=768, |
|
in_channels=768, |
|
in_index=11, |
|
channels=512, |
|
num_classes=104, |
|
embed_dim=768, |
|
align_corners=False, |
|
num_conv=2, |
|
upsampling_method='bilinear', |
|
), |
|
auxiliary_head=[ |
|
dict( |
|
type='VisionTransformerUpHead', |
|
in_channels=768, |
|
channels=512, |
|
in_index=5, |
|
img_size=768, |
|
embed_dim=768, |
|
num_classes=104, |
|
norm_cfg=norm_cfg, |
|
num_conv=2, |
|
upsampling_method='bilinear', |
|
align_corners=False, |
|
loss_decode=dict( |
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), |
|
dict( |
|
type='VisionTransformerUpHead', |
|
in_channels=768, |
|
channels=512, |
|
in_index=7, |
|
img_size=768, |
|
embed_dim=768, |
|
num_classes=104, |
|
norm_cfg=norm_cfg, |
|
num_conv=2, |
|
upsampling_method='bilinear', |
|
align_corners=False, |
|
loss_decode=dict( |
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), |
|
dict( |
|
type='VisionTransformerUpHead', |
|
in_channels=768, |
|
channels=512, |
|
in_index=9, |
|
img_size=768, |
|
embed_dim=768, |
|
num_classes=104, |
|
norm_cfg=norm_cfg, |
|
num_conv=2, |
|
upsampling_method='bilinear', |
|
align_corners=False, |
|
loss_decode=dict( |
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), |
|
]) |
|
|
|
optimizer = dict(lr=0.01, weight_decay=0.0, paramwise_cfg=dict(custom_keys={'head': dict(lr_mult=10.)})) |
|
|
|
crop_size = (768, 768) |
|
test_cfg = dict(mode='slide', crop_size=crop_size, stride=(512, 512)) |
|
find_unused_parameters = True |
|
data = dict(samples_per_gpu=1) |
|
|