|
import numpy as np |
|
import torch |
|
from mmcv import ConfigDict |
|
from torch import nn |
|
|
|
from mmseg.models import BACKBONES, HEADS, build_segmentor |
|
from mmseg.models.decode_heads.cascade_decode_head import BaseCascadeDecodeHead |
|
from mmseg.models.decode_heads.decode_head import BaseDecodeHead |
|
|
|
|
|
def _demo_mm_inputs(input_shape=(1, 3, 8, 16), num_classes=10): |
|
"""Create a superset of inputs needed to run test or train batches. |
|
|
|
Args: |
|
input_shape (tuple): |
|
input batch dimensions |
|
|
|
num_classes (int): |
|
number of semantic classes |
|
""" |
|
(N, C, H, W) = input_shape |
|
|
|
rng = np.random.RandomState(0) |
|
|
|
imgs = rng.rand(*input_shape) |
|
segs = rng.randint( |
|
low=0, high=num_classes - 1, size=(N, 1, H, W)).astype(np.uint8) |
|
|
|
img_metas = [{ |
|
'img_shape': (H, W, C), |
|
'ori_shape': (H, W, C), |
|
'pad_shape': (H, W, C), |
|
'filename': '<demo>.png', |
|
'scale_factor': 1.0, |
|
'flip': False, |
|
'flip_direction': 'horizontal' |
|
} for _ in range(N)] |
|
|
|
mm_inputs = { |
|
'imgs': torch.FloatTensor(imgs), |
|
'img_metas': img_metas, |
|
'gt_semantic_seg': torch.LongTensor(segs) |
|
} |
|
return mm_inputs |
|
|
|
|
|
@BACKBONES.register_module() |
|
class ExampleBackbone(nn.Module): |
|
|
|
def __init__(self): |
|
super(ExampleBackbone, self).__init__() |
|
self.conv = nn.Conv2d(3, 3, 3) |
|
|
|
def init_weights(self, pretrained=None): |
|
pass |
|
|
|
def forward(self, x): |
|
return [self.conv(x)] |
|
|
|
|
|
@HEADS.register_module() |
|
class ExampleDecodeHead(BaseDecodeHead): |
|
|
|
def __init__(self): |
|
super(ExampleDecodeHead, self).__init__(3, 3, num_classes=19) |
|
|
|
def forward(self, inputs): |
|
return self.cls_seg(inputs[0]) |
|
|
|
|
|
@HEADS.register_module() |
|
class ExampleCascadeDecodeHead(BaseCascadeDecodeHead): |
|
|
|
def __init__(self): |
|
super(ExampleCascadeDecodeHead, self).__init__(3, 3, num_classes=19) |
|
|
|
def forward(self, inputs, prev_out): |
|
return self.cls_seg(inputs[0]) |
|
|
|
|
|
def _segmentor_forward_train_test(segmentor): |
|
if isinstance(segmentor.decode_head, nn.ModuleList): |
|
num_classes = segmentor.decode_head[-1].num_classes |
|
else: |
|
num_classes = segmentor.decode_head.num_classes |
|
|
|
mm_inputs = _demo_mm_inputs(num_classes=num_classes) |
|
|
|
imgs = mm_inputs.pop('imgs') |
|
img_metas = mm_inputs.pop('img_metas') |
|
gt_semantic_seg = mm_inputs['gt_semantic_seg'] |
|
|
|
|
|
if torch.cuda.is_available(): |
|
segmentor = segmentor.cuda() |
|
imgs = imgs.cuda() |
|
gt_semantic_seg = gt_semantic_seg.cuda() |
|
|
|
|
|
losses = segmentor.forward( |
|
imgs, img_metas, gt_semantic_seg=gt_semantic_seg, return_loss=True) |
|
assert isinstance(losses, dict) |
|
|
|
|
|
with torch.no_grad(): |
|
segmentor.eval() |
|
|
|
img_list = [img[None, :] for img in imgs] |
|
img_meta_list = [[img_meta] for img_meta in img_metas] |
|
segmentor.forward(img_list, img_meta_list, return_loss=False) |
|
|
|
|
|
with torch.no_grad(): |
|
segmentor.eval() |
|
|
|
img_list = [img[None, :] for img in imgs] |
|
img_list = img_list + img_list |
|
img_meta_list = [[img_meta] for img_meta in img_metas] |
|
img_meta_list = img_meta_list + img_meta_list |
|
segmentor.forward(img_list, img_meta_list, return_loss=False) |
|
|
|
|
|
def test_encoder_decoder(): |
|
|
|
|
|
|
|
cfg = ConfigDict( |
|
type='EncoderDecoder', |
|
backbone=dict(type='ExampleBackbone'), |
|
decode_head=dict(type='ExampleDecodeHead'), |
|
train_cfg=None, |
|
test_cfg=dict(mode='whole')) |
|
segmentor = build_segmentor(cfg) |
|
_segmentor_forward_train_test(segmentor) |
|
|
|
|
|
cfg.test_cfg = ConfigDict(mode='slide', crop_size=(3, 3), stride=(2, 2)) |
|
segmentor = build_segmentor(cfg) |
|
_segmentor_forward_train_test(segmentor) |
|
|
|
|
|
cfg = ConfigDict( |
|
type='EncoderDecoder', |
|
backbone=dict(type='ExampleBackbone'), |
|
decode_head=dict(type='ExampleDecodeHead'), |
|
auxiliary_head=dict(type='ExampleDecodeHead')) |
|
cfg.test_cfg = ConfigDict(mode='whole') |
|
segmentor = build_segmentor(cfg) |
|
_segmentor_forward_train_test(segmentor) |
|
|
|
|
|
cfg = ConfigDict( |
|
type='EncoderDecoder', |
|
backbone=dict(type='ExampleBackbone'), |
|
decode_head=dict(type='ExampleDecodeHead'), |
|
auxiliary_head=[ |
|
dict(type='ExampleDecodeHead'), |
|
dict(type='ExampleDecodeHead') |
|
]) |
|
cfg.test_cfg = ConfigDict(mode='whole') |
|
segmentor = build_segmentor(cfg) |
|
_segmentor_forward_train_test(segmentor) |
|
|
|
|
|
def test_cascade_encoder_decoder(): |
|
|
|
|
|
cfg = ConfigDict( |
|
type='CascadeEncoderDecoder', |
|
num_stages=2, |
|
backbone=dict(type='ExampleBackbone'), |
|
decode_head=[ |
|
dict(type='ExampleDecodeHead'), |
|
dict(type='ExampleCascadeDecodeHead') |
|
]) |
|
cfg.test_cfg = ConfigDict(mode='whole') |
|
segmentor = build_segmentor(cfg) |
|
_segmentor_forward_train_test(segmentor) |
|
|
|
|
|
cfg.test_cfg = ConfigDict(mode='slide', crop_size=(3, 3), stride=(2, 2)) |
|
segmentor = build_segmentor(cfg) |
|
_segmentor_forward_train_test(segmentor) |
|
|
|
|
|
cfg = ConfigDict( |
|
type='CascadeEncoderDecoder', |
|
num_stages=2, |
|
backbone=dict(type='ExampleBackbone'), |
|
decode_head=[ |
|
dict(type='ExampleDecodeHead'), |
|
dict(type='ExampleCascadeDecodeHead') |
|
], |
|
auxiliary_head=dict(type='ExampleDecodeHead')) |
|
cfg.test_cfg = ConfigDict(mode='whole') |
|
segmentor = build_segmentor(cfg) |
|
_segmentor_forward_train_test(segmentor) |
|
|
|
|
|
cfg = ConfigDict( |
|
type='CascadeEncoderDecoder', |
|
num_stages=2, |
|
backbone=dict(type='ExampleBackbone'), |
|
decode_head=[ |
|
dict(type='ExampleDecodeHead'), |
|
dict(type='ExampleCascadeDecodeHead') |
|
], |
|
auxiliary_head=[ |
|
dict(type='ExampleDecodeHead'), |
|
dict(type='ExampleDecodeHead') |
|
]) |
|
cfg.test_cfg = ConfigDict(mode='whole') |
|
segmentor = build_segmentor(cfg) |
|
_segmentor_forward_train_test(segmentor) |
|
|