|
_base_ = [ |
|
'../_base_/models/setr_mla.py', |
|
'../_base_/datasets/FoodSeg103_768x768.py', '../_base_/default_runtime.py', |
|
'../_base_/schedules/schedule_80k.py' |
|
] |
|
model = dict( |
|
backbone=dict( |
|
img_size=768, |
|
pos_embed_interp=True, |
|
drop_rate=0., |
|
mla_channels=256, |
|
mla_index=(5,11,17,23) |
|
), |
|
decode_head=dict(img_size=768,mla_channels=256,mlahead_channels=128,num_classes=104), |
|
auxiliary_head=[ |
|
dict( |
|
type='VIT_MLA_AUXIHead', |
|
in_channels=256, |
|
channels=512, |
|
in_index=0, |
|
img_size=768, |
|
num_classes=104, |
|
align_corners=False, |
|
loss_decode=dict( |
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), |
|
dict( |
|
type='VIT_MLA_AUXIHead', |
|
in_channels=256, |
|
channels=512, |
|
in_index=1, |
|
img_size=768, |
|
num_classes=104, |
|
align_corners=False, |
|
loss_decode=dict( |
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), |
|
dict( |
|
type='VIT_MLA_AUXIHead', |
|
in_channels=256, |
|
channels=512, |
|
in_index=2, |
|
img_size=768, |
|
num_classes=104, |
|
align_corners=False, |
|
loss_decode=dict( |
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), |
|
dict( |
|
type='VIT_MLA_AUXIHead', |
|
in_channels=256, |
|
channels=512, |
|
in_index=3, |
|
img_size=768, |
|
num_classes=104, |
|
align_corners=False, |
|
loss_decode=dict( |
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), |
|
]) |
|
|
|
optimizer = dict(lr=0.002, weight_decay=0.0, |
|
paramwise_cfg = dict(custom_keys={'head': dict(lr_mult=10.)}) |
|
) |
|
|
|
crop_size = (768, 768) |
|
test_cfg = dict(mode='slide', crop_size=crop_size, stride=(512, 512)) |
|
find_unused_parameters = True |
|
data = dict(samples_per_gpu=1) |
|
|
|
checkpoint_config = dict(by_epoch=False, interval=4000) |
|
evaluation = dict(interval=80000, metric='mIoU') |
|
|