|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from mmcv.cnn import ConvModule |
|
|
|
from mmseg.ops import resize |
|
from ..builder import HEADS |
|
from .decode_head import BaseDecodeHead |
|
|
|
|
|
class ACM(nn.Module): |
|
"""Adaptive Context Module used in APCNet. |
|
|
|
Args: |
|
pool_scale (int): Pooling scale used in Adaptive Context |
|
Module to extract region fetures. |
|
fusion (bool): Add one conv to fuse residual feature. |
|
in_channels (int): Input channels. |
|
channels (int): Channels after modules, before conv_seg. |
|
conv_cfg (dict | None): Config of conv layers. |
|
norm_cfg (dict | None): Config of norm layers. |
|
act_cfg (dict): Config of activation layers. |
|
""" |
|
|
|
def __init__(self, pool_scale, fusion, in_channels, channels, conv_cfg, |
|
norm_cfg, act_cfg): |
|
super(ACM, self).__init__() |
|
self.pool_scale = pool_scale |
|
self.fusion = fusion |
|
self.in_channels = in_channels |
|
self.channels = channels |
|
self.conv_cfg = conv_cfg |
|
self.norm_cfg = norm_cfg |
|
self.act_cfg = act_cfg |
|
self.pooled_redu_conv = ConvModule( |
|
self.in_channels, |
|
self.channels, |
|
1, |
|
conv_cfg=self.conv_cfg, |
|
norm_cfg=self.norm_cfg, |
|
act_cfg=self.act_cfg) |
|
|
|
self.input_redu_conv = ConvModule( |
|
self.in_channels, |
|
self.channels, |
|
1, |
|
conv_cfg=self.conv_cfg, |
|
norm_cfg=self.norm_cfg, |
|
act_cfg=self.act_cfg) |
|
|
|
self.global_info = ConvModule( |
|
self.channels, |
|
self.channels, |
|
1, |
|
conv_cfg=self.conv_cfg, |
|
norm_cfg=self.norm_cfg, |
|
act_cfg=self.act_cfg) |
|
|
|
self.gla = nn.Conv2d(self.channels, self.pool_scale**2, 1, 1, 0) |
|
|
|
self.residual_conv = ConvModule( |
|
self.channels, |
|
self.channels, |
|
1, |
|
conv_cfg=self.conv_cfg, |
|
norm_cfg=self.norm_cfg, |
|
act_cfg=self.act_cfg) |
|
|
|
if self.fusion: |
|
self.fusion_conv = ConvModule( |
|
self.channels, |
|
self.channels, |
|
1, |
|
conv_cfg=self.conv_cfg, |
|
norm_cfg=self.norm_cfg, |
|
act_cfg=self.act_cfg) |
|
|
|
def forward(self, x): |
|
"""Forward function.""" |
|
pooled_x = F.adaptive_avg_pool2d(x, self.pool_scale) |
|
|
|
x = self.input_redu_conv(x) |
|
|
|
pooled_x = self.pooled_redu_conv(pooled_x) |
|
batch_size = x.size(0) |
|
|
|
pooled_x = pooled_x.view(batch_size, self.channels, |
|
-1).permute(0, 2, 1).contiguous() |
|
|
|
affinity_matrix = self.gla(x + resize( |
|
self.global_info(F.adaptive_avg_pool2d(x, 1)), size=x.shape[2:]) |
|
).permute(0, 2, 3, 1).reshape( |
|
batch_size, -1, self.pool_scale**2) |
|
affinity_matrix = F.sigmoid(affinity_matrix) |
|
|
|
z_out = torch.matmul(affinity_matrix, pooled_x) |
|
|
|
z_out = z_out.permute(0, 2, 1).contiguous() |
|
|
|
z_out = z_out.view(batch_size, self.channels, x.size(2), x.size(3)) |
|
z_out = self.residual_conv(z_out) |
|
z_out = F.relu(z_out + x) |
|
if self.fusion: |
|
z_out = self.fusion_conv(z_out) |
|
|
|
return z_out |
|
|
|
|
|
@HEADS.register_module() |
|
class APCHead(BaseDecodeHead): |
|
"""Adaptive Pyramid Context Network for Semantic Segmentation. |
|
|
|
This head is the implementation of |
|
`APCNet <https://openaccess.thecvf.com/content_CVPR_2019/papers/\ |
|
He_Adaptive_Pyramid_Context_Network_for_Semantic_Segmentation_\ |
|
CVPR_2019_paper.pdf>`_. |
|
|
|
Args: |
|
pool_scales (tuple[int]): Pooling scales used in Adaptive Context |
|
Module. Default: (1, 2, 3, 6). |
|
fusion (bool): Add one conv to fuse residual feature. |
|
""" |
|
|
|
def __init__(self, pool_scales=(1, 2, 3, 6), fusion=True, **kwargs): |
|
super(APCHead, self).__init__(**kwargs) |
|
assert isinstance(pool_scales, (list, tuple)) |
|
self.pool_scales = pool_scales |
|
self.fusion = fusion |
|
acm_modules = [] |
|
for pool_scale in self.pool_scales: |
|
acm_modules.append( |
|
ACM(pool_scale, |
|
self.fusion, |
|
self.in_channels, |
|
self.channels, |
|
conv_cfg=self.conv_cfg, |
|
norm_cfg=self.norm_cfg, |
|
act_cfg=self.act_cfg)) |
|
self.acm_modules = nn.ModuleList(acm_modules) |
|
self.bottleneck = ConvModule( |
|
self.in_channels + len(pool_scales) * self.channels, |
|
self.channels, |
|
3, |
|
padding=1, |
|
conv_cfg=self.conv_cfg, |
|
norm_cfg=self.norm_cfg, |
|
act_cfg=self.act_cfg) |
|
|
|
def forward(self, inputs): |
|
"""Forward function.""" |
|
x = self._transform_inputs(inputs) |
|
acm_outs = [x] |
|
for acm_module in self.acm_modules: |
|
acm_outs.append(acm_module(x)) |
|
acm_outs = torch.cat(acm_outs, dim=1) |
|
output = self.bottleneck(acm_outs) |
|
output = self.cls_seg(output) |
|
return output |
|
|