|
from abc import ABCMeta, abstractmethod |
|
|
|
from .decode_head import BaseDecodeHead |
|
|
|
|
|
class BaseCascadeDecodeHead(BaseDecodeHead, metaclass=ABCMeta): |
|
"""Base class for cascade decode head used in |
|
:class:`CascadeEncoderDecoder.""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
super(BaseCascadeDecodeHead, self).__init__(*args, **kwargs) |
|
|
|
@abstractmethod |
|
def forward(self, inputs, prev_output): |
|
"""Placeholder of forward function.""" |
|
pass |
|
|
|
def forward_train(self, inputs, prev_output, img_metas, gt_semantic_seg, |
|
train_cfg): |
|
"""Forward function for training. |
|
Args: |
|
inputs (list[Tensor]): List of multi-level img features. |
|
prev_output (Tensor): The output of previous decode head. |
|
img_metas (list[dict]): List of image info dict where each dict |
|
has: 'img_shape', 'scale_factor', 'flip', and may also contain |
|
'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. |
|
For details on the values of these keys see |
|
`mmseg/datasets/pipelines/formatting.py:Collect`. |
|
gt_semantic_seg (Tensor): Semantic segmentation masks |
|
used if the architecture supports semantic segmentation task. |
|
train_cfg (dict): The training config. |
|
|
|
Returns: |
|
dict[str, Tensor]: a dictionary of loss components |
|
""" |
|
seg_logits = self.forward(inputs, prev_output) |
|
losses = self.losses(seg_logits, gt_semantic_seg) |
|
|
|
return losses |
|
|
|
def forward_test(self, inputs, prev_output, img_metas, test_cfg): |
|
"""Forward function for testing. |
|
|
|
Args: |
|
inputs (list[Tensor]): List of multi-level img features. |
|
prev_output (Tensor): The output of previous decode head. |
|
img_metas (list[dict]): List of image info dict where each dict |
|
has: 'img_shape', 'scale_factor', 'flip', and may also contain |
|
'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. |
|
For details on the values of these keys see |
|
`mmseg/datasets/pipelines/formatting.py:Collect`. |
|
test_cfg (dict): The testing config. |
|
|
|
Returns: |
|
Tensor: Output segmentation map. |
|
""" |
|
return self.forward(inputs, prev_output) |
|
|