Image Segmentation
Transformers
PyTorch
upernet
Inference Endpoints
mccaly's picture
Upload 660 files
b13b124
raw
history blame
4.57 kB
import torch
from mmcv.cnn import NonLocal2d
from torch import nn
from ..builder import HEADS
from .fcn_head import FCNHead
class DisentangledNonLocal2d(NonLocal2d):
"""Disentangled Non-Local Blocks.
Args:
temperature (float): Temperature to adjust attention. Default: 0.05
"""
def __init__(self, *arg, temperature, **kwargs):
super().__init__(*arg, **kwargs)
self.temperature = temperature
self.conv_mask = nn.Conv2d(self.in_channels, 1, kernel_size=1)
def embedded_gaussian(self, theta_x, phi_x):
"""Embedded gaussian with temperature."""
# NonLocal2d pairwise_weight: [N, HxW, HxW]
pairwise_weight = torch.matmul(theta_x, phi_x)
if self.use_scale:
# theta_x.shape[-1] is `self.inter_channels`
pairwise_weight /= theta_x.shape[-1]**0.5
pairwise_weight /= self.temperature
pairwise_weight = pairwise_weight.softmax(dim=-1)
return pairwise_weight
def forward(self, x):
# x: [N, C, H, W]
n = x.size(0)
# g_x: [N, HxW, C]
g_x = self.g(x).view(n, self.inter_channels, -1)
g_x = g_x.permute(0, 2, 1)
# theta_x: [N, HxW, C], phi_x: [N, C, HxW]
if self.mode == 'gaussian':
theta_x = x.view(n, self.in_channels, -1)
theta_x = theta_x.permute(0, 2, 1)
if self.sub_sample:
phi_x = self.phi(x).view(n, self.in_channels, -1)
else:
phi_x = x.view(n, self.in_channels, -1)
elif self.mode == 'concatenation':
theta_x = self.theta(x).view(n, self.inter_channels, -1, 1)
phi_x = self.phi(x).view(n, self.inter_channels, 1, -1)
else:
theta_x = self.theta(x).view(n, self.inter_channels, -1)
theta_x = theta_x.permute(0, 2, 1)
phi_x = self.phi(x).view(n, self.inter_channels, -1)
# subtract mean
theta_x -= theta_x.mean(dim=-2, keepdim=True)
phi_x -= phi_x.mean(dim=-1, keepdim=True)
pairwise_func = getattr(self, self.mode)
# pairwise_weight: [N, HxW, HxW]
pairwise_weight = pairwise_func(theta_x, phi_x)
# y: [N, HxW, C]
y = torch.matmul(pairwise_weight, g_x)
# y: [N, C, H, W]
y = y.permute(0, 2, 1).contiguous().reshape(n, self.inter_channels,
*x.size()[2:])
# unary_mask: [N, 1, HxW]
unary_mask = self.conv_mask(x)
unary_mask = unary_mask.view(n, 1, -1)
unary_mask = unary_mask.softmax(dim=-1)
# unary_x: [N, 1, C]
unary_x = torch.matmul(unary_mask, g_x)
# unary_x: [N, C, 1, 1]
unary_x = unary_x.permute(0, 2, 1).contiguous().reshape(
n, self.inter_channels, 1, 1)
output = x + self.conv_out(y + unary_x)
return output
@HEADS.register_module()
class DNLHead(FCNHead):
"""Disentangled Non-Local Neural Networks.
This head is the implementation of `DNLNet
<https://arxiv.org/abs/2006.06668>`_.
Args:
reduction (int): Reduction factor of projection transform. Default: 2.
use_scale (bool): Whether to scale pairwise_weight by
sqrt(1/inter_channels). Default: False.
mode (str): The nonlocal mode. Options are 'embedded_gaussian',
'dot_product'. Default: 'embedded_gaussian.'.
temperature (float): Temperature to adjust attention. Default: 0.05
"""
def __init__(self,
reduction=2,
use_scale=True,
mode='embedded_gaussian',
temperature=0.05,
**kwargs):
super(DNLHead, self).__init__(num_convs=2, **kwargs)
self.reduction = reduction
self.use_scale = use_scale
self.mode = mode
self.temperature = temperature
self.dnl_block = DisentangledNonLocal2d(
in_channels=self.channels,
reduction=self.reduction,
use_scale=self.use_scale,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
mode=self.mode,
temperature=self.temperature)
def forward(self, inputs):
"""Forward function."""
x = self._transform_inputs(inputs)
output = self.convs[0](x)
output = self.dnl_block(output)
output = self.convs[1](output)
if self.concat_input:
output = self.conv_cat(torch.cat([x, output], dim=1))
output = self.cls_seg(output)
return output