|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from mmcv.cnn import ConvModule |
|
|
|
from mmseg.ops import resize |
|
from ..builder import HEADS |
|
from ..utils import SelfAttentionBlock as _SelfAttentionBlock |
|
from .cascade_decode_head import BaseCascadeDecodeHead |
|
|
|
|
|
class SpatialGatherModule(nn.Module): |
|
"""Aggregate the context features according to the initial predicted |
|
probability distribution. |
|
|
|
Employ the soft-weighted method to aggregate the context. |
|
""" |
|
|
|
def __init__(self, scale): |
|
super(SpatialGatherModule, self).__init__() |
|
self.scale = scale |
|
|
|
def forward(self, feats, probs): |
|
"""Forward function.""" |
|
batch_size, num_classes, height, width = probs.size() |
|
channels = feats.size(1) |
|
probs = probs.view(batch_size, num_classes, -1) |
|
feats = feats.view(batch_size, channels, -1) |
|
|
|
feats = feats.permute(0, 2, 1) |
|
|
|
probs = F.softmax(self.scale * probs, dim=2) |
|
|
|
ocr_context = torch.matmul(probs, feats) |
|
ocr_context = ocr_context.permute(0, 2, 1).contiguous().unsqueeze(3) |
|
return ocr_context |
|
|
|
|
|
class ObjectAttentionBlock(_SelfAttentionBlock): |
|
"""Make a OCR used SelfAttentionBlock.""" |
|
|
|
def __init__(self, in_channels, channels, scale, conv_cfg, norm_cfg, |
|
act_cfg): |
|
if scale > 1: |
|
query_downsample = nn.MaxPool2d(kernel_size=scale) |
|
else: |
|
query_downsample = None |
|
super(ObjectAttentionBlock, self).__init__( |
|
key_in_channels=in_channels, |
|
query_in_channels=in_channels, |
|
channels=channels, |
|
out_channels=in_channels, |
|
share_key_query=False, |
|
query_downsample=query_downsample, |
|
key_downsample=None, |
|
key_query_num_convs=2, |
|
key_query_norm=True, |
|
value_out_num_convs=1, |
|
value_out_norm=True, |
|
matmul_norm=True, |
|
with_out=True, |
|
conv_cfg=conv_cfg, |
|
norm_cfg=norm_cfg, |
|
act_cfg=act_cfg) |
|
self.bottleneck = ConvModule( |
|
in_channels * 2, |
|
in_channels, |
|
1, |
|
conv_cfg=self.conv_cfg, |
|
norm_cfg=self.norm_cfg, |
|
act_cfg=self.act_cfg) |
|
|
|
def forward(self, query_feats, key_feats): |
|
"""Forward function.""" |
|
context = super(ObjectAttentionBlock, |
|
self).forward(query_feats, key_feats) |
|
output = self.bottleneck(torch.cat([context, query_feats], dim=1)) |
|
if self.query_downsample is not None: |
|
output = resize(query_feats) |
|
|
|
return output |
|
|
|
|
|
@HEADS.register_module() |
|
class OCRHead(BaseCascadeDecodeHead): |
|
"""Object-Contextual Representations for Semantic Segmentation. |
|
|
|
This head is the implementation of `OCRNet |
|
<https://arxiv.org/abs/1909.11065>`_. |
|
|
|
Args: |
|
ocr_channels (int): The intermediate channels of OCR block. |
|
scale (int): The scale of probability map in SpatialGatherModule in |
|
Default: 1. |
|
""" |
|
|
|
def __init__(self, ocr_channels, scale=1, **kwargs): |
|
super(OCRHead, self).__init__(**kwargs) |
|
self.ocr_channels = ocr_channels |
|
self.scale = scale |
|
self.object_context_block = ObjectAttentionBlock( |
|
self.channels, |
|
self.ocr_channels, |
|
self.scale, |
|
conv_cfg=self.conv_cfg, |
|
norm_cfg=self.norm_cfg, |
|
act_cfg=self.act_cfg) |
|
self.spatial_gather_module = SpatialGatherModule(self.scale) |
|
|
|
self.bottleneck = ConvModule( |
|
self.in_channels, |
|
self.channels, |
|
3, |
|
padding=1, |
|
conv_cfg=self.conv_cfg, |
|
norm_cfg=self.norm_cfg, |
|
act_cfg=self.act_cfg) |
|
|
|
def forward(self, inputs, prev_output): |
|
"""Forward function.""" |
|
x = self._transform_inputs(inputs) |
|
feats = self.bottleneck(x) |
|
context = self.spatial_gather_module(feats, prev_output) |
|
object_context = self.object_context_block(feats, context) |
|
output = self.cls_seg(object_context) |
|
|
|
return output |
|
|