|
from mmcv.cnn import DepthwiseSeparableConvModule |
|
|
|
from ..builder import HEADS |
|
from .fcn_head import FCNHead |
|
|
|
|
|
@HEADS.register_module() |
|
class DepthwiseSeparableFCNHead(FCNHead): |
|
"""Depthwise-Separable Fully Convolutional Network for Semantic |
|
Segmentation. |
|
|
|
This head is implemented according to Fast-SCNN paper. |
|
Args: |
|
in_channels(int): Number of output channels of FFM. |
|
channels(int): Number of middle-stage channels in the decode head. |
|
concat_input(bool): Whether to concatenate original decode input into |
|
the result of several consecutive convolution layers. |
|
Default: True. |
|
num_classes(int): Used to determine the dimension of |
|
final prediction tensor. |
|
in_index(int): Correspond with 'out_indices' in FastSCNN backbone. |
|
norm_cfg (dict | None): Config of norm layers. |
|
align_corners (bool): align_corners argument of F.interpolate. |
|
Default: False. |
|
loss_decode(dict): Config of loss type and some |
|
relevant additional options. |
|
""" |
|
|
|
def __init__(self, **kwargs): |
|
super(DepthwiseSeparableFCNHead, self).__init__(**kwargs) |
|
self.convs[0] = DepthwiseSeparableConvModule( |
|
self.in_channels, |
|
self.channels, |
|
kernel_size=self.kernel_size, |
|
padding=self.kernel_size // 2, |
|
norm_cfg=self.norm_cfg) |
|
for i in range(1, self.num_convs): |
|
self.convs[i] = DepthwiseSeparableConvModule( |
|
self.channels, |
|
self.channels, |
|
kernel_size=self.kernel_size, |
|
padding=self.kernel_size // 2, |
|
norm_cfg=self.norm_cfg) |
|
|
|
if self.concat_input: |
|
self.conv_cat = DepthwiseSeparableConvModule( |
|
self.in_channels + self.channels, |
|
self.channels, |
|
kernel_size=self.kernel_size, |
|
padding=self.kernel_size // 2, |
|
norm_cfg=self.norm_cfg) |
|
|