Image Segmentation
Transformers
PyTorch
upernet
Inference Endpoints
test2 / mmseg /models /decode_heads /sep_fcn_head.py
mccaly's picture
Upload 660 files
b13b124
raw
history blame
2 kB
from mmcv.cnn import DepthwiseSeparableConvModule
from ..builder import HEADS
from .fcn_head import FCNHead
@HEADS.register_module()
class DepthwiseSeparableFCNHead(FCNHead):
"""Depthwise-Separable Fully Convolutional Network for Semantic
Segmentation.
This head is implemented according to Fast-SCNN paper.
Args:
in_channels(int): Number of output channels of FFM.
channels(int): Number of middle-stage channels in the decode head.
concat_input(bool): Whether to concatenate original decode input into
the result of several consecutive convolution layers.
Default: True.
num_classes(int): Used to determine the dimension of
final prediction tensor.
in_index(int): Correspond with 'out_indices' in FastSCNN backbone.
norm_cfg (dict | None): Config of norm layers.
align_corners (bool): align_corners argument of F.interpolate.
Default: False.
loss_decode(dict): Config of loss type and some
relevant additional options.
"""
def __init__(self, **kwargs):
super(DepthwiseSeparableFCNHead, self).__init__(**kwargs)
self.convs[0] = DepthwiseSeparableConvModule(
self.in_channels,
self.channels,
kernel_size=self.kernel_size,
padding=self.kernel_size // 2,
norm_cfg=self.norm_cfg)
for i in range(1, self.num_convs):
self.convs[i] = DepthwiseSeparableConvModule(
self.channels,
self.channels,
kernel_size=self.kernel_size,
padding=self.kernel_size // 2,
norm_cfg=self.norm_cfg)
if self.concat_input:
self.conv_cat = DepthwiseSeparableConvModule(
self.in_channels + self.channels,
self.channels,
kernel_size=self.kernel_size,
padding=self.kernel_size // 2,
norm_cfg=self.norm_cfg)