Image Segmentation
Transformers
PyTorch
upernet
Inference Endpoints
test2 / mmseg /models /segmentors /cascade_encoder_decoder.py
mccaly's picture
Upload 660 files
b13b124
raw
history blame
3.67 kB
from torch import nn
from mmseg.core import add_prefix
from mmseg.ops import resize
from .. import builder
from ..builder import SEGMENTORS
from .encoder_decoder import EncoderDecoder
@SEGMENTORS.register_module()
class CascadeEncoderDecoder(EncoderDecoder):
"""Cascade Encoder Decoder segmentors.
CascadeEncoderDecoder almost the same as EncoderDecoder, while decoders of
CascadeEncoderDecoder are cascaded. The output of previous decoder_head
will be the input of next decoder_head.
"""
def __init__(self,
num_stages,
backbone,
decode_head,
neck=None,
auxiliary_head=None,
train_cfg=None,
test_cfg=None,
pretrained=None):
self.num_stages = num_stages
super(CascadeEncoderDecoder, self).__init__(
backbone=backbone,
decode_head=decode_head,
neck=neck,
auxiliary_head=auxiliary_head,
train_cfg=train_cfg,
test_cfg=test_cfg,
pretrained=pretrained)
def _init_decode_head(self, decode_head):
"""Initialize ``decode_head``"""
assert isinstance(decode_head, list)
assert len(decode_head) == self.num_stages
self.decode_head = nn.ModuleList()
for i in range(self.num_stages):
self.decode_head.append(builder.build_head(decode_head[i]))
self.align_corners = self.decode_head[-1].align_corners
self.num_classes = self.decode_head[-1].num_classes
def init_weights(self, pretrained=None):
"""Initialize the weights in backbone and heads.
Args:
pretrained (str, optional): Path to pre-trained weights.
Defaults to None.
"""
self.backbone.init_weights(pretrained=pretrained)
for i in range(self.num_stages):
self.decode_head[i].init_weights()
if self.with_auxiliary_head:
if isinstance(self.auxiliary_head, nn.ModuleList):
for aux_head in self.auxiliary_head:
aux_head.init_weights()
else:
self.auxiliary_head.init_weights()
def encode_decode(self, img, img_metas):
"""Encode images with backbone and decode into a semantic segmentation
map of the same size as input."""
x = self.extract_feat(img)
out = self.decode_head[0].forward_test(x, img_metas, self.test_cfg)
for i in range(1, self.num_stages):
out = self.decode_head[i].forward_test(x, out, img_metas,
self.test_cfg)
out = resize(
input=out,
size=img.shape[2:],
mode='bilinear',
align_corners=self.align_corners)
return out
def _decode_head_forward_train(self, x, img_metas, gt_semantic_seg):
"""Run forward function and calculate loss for decode head in
training."""
losses = dict()
loss_decode = self.decode_head[0].forward_train(
x, img_metas, gt_semantic_seg, self.train_cfg)
losses.update(add_prefix(loss_decode, 'decode_0'))
for i in range(1, self.num_stages):
# forward test again, maybe unnecessary for most methods.
prev_outputs = self.decode_head[i - 1].forward_test(
x, img_metas, self.test_cfg)
loss_decode = self.decode_head[i].forward_train(
x, prev_outputs, img_metas, gt_semantic_seg, self.train_cfg)
losses.update(add_prefix(loss_decode, f'decode_{i}'))
return losses