|
from mmcv.cnn import ConvModule |
|
from torch import nn as nn |
|
from torch.utils import checkpoint as cp |
|
|
|
from .se_layer import SELayer |
|
|
|
|
|
class InvertedResidual(nn.Module): |
|
"""InvertedResidual block for MobileNetV2. |
|
|
|
Args: |
|
in_channels (int): The input channels of the InvertedResidual block. |
|
out_channels (int): The output channels of the InvertedResidual block. |
|
stride (int): Stride of the middle (first) 3x3 convolution. |
|
expand_ratio (int): Adjusts number of channels of the hidden layer |
|
in InvertedResidual by this amount. |
|
dilation (int): Dilation rate of depthwise conv. Default: 1 |
|
conv_cfg (dict): Config dict for convolution layer. |
|
Default: None, which means using conv2d. |
|
norm_cfg (dict): Config dict for normalization layer. |
|
Default: dict(type='BN'). |
|
act_cfg (dict): Config dict for activation layer. |
|
Default: dict(type='ReLU6'). |
|
with_cp (bool): Use checkpoint or not. Using checkpoint will save some |
|
memory while slowing down the training speed. Default: False. |
|
|
|
Returns: |
|
Tensor: The output tensor. |
|
""" |
|
|
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
stride, |
|
expand_ratio, |
|
dilation=1, |
|
conv_cfg=None, |
|
norm_cfg=dict(type='BN'), |
|
act_cfg=dict(type='ReLU6'), |
|
with_cp=False): |
|
super(InvertedResidual, self).__init__() |
|
self.stride = stride |
|
assert stride in [1, 2], f'stride must in [1, 2]. ' \ |
|
f'But received {stride}.' |
|
self.with_cp = with_cp |
|
self.use_res_connect = self.stride == 1 and in_channels == out_channels |
|
hidden_dim = int(round(in_channels * expand_ratio)) |
|
|
|
layers = [] |
|
if expand_ratio != 1: |
|
layers.append( |
|
ConvModule( |
|
in_channels=in_channels, |
|
out_channels=hidden_dim, |
|
kernel_size=1, |
|
conv_cfg=conv_cfg, |
|
norm_cfg=norm_cfg, |
|
act_cfg=act_cfg)) |
|
layers.extend([ |
|
ConvModule( |
|
in_channels=hidden_dim, |
|
out_channels=hidden_dim, |
|
kernel_size=3, |
|
stride=stride, |
|
padding=dilation, |
|
dilation=dilation, |
|
groups=hidden_dim, |
|
conv_cfg=conv_cfg, |
|
norm_cfg=norm_cfg, |
|
act_cfg=act_cfg), |
|
ConvModule( |
|
in_channels=hidden_dim, |
|
out_channels=out_channels, |
|
kernel_size=1, |
|
conv_cfg=conv_cfg, |
|
norm_cfg=norm_cfg, |
|
act_cfg=None) |
|
]) |
|
self.conv = nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
|
|
def _inner_forward(x): |
|
if self.use_res_connect: |
|
return x + self.conv(x) |
|
else: |
|
return self.conv(x) |
|
|
|
if self.with_cp and x.requires_grad: |
|
out = cp.checkpoint(_inner_forward, x) |
|
else: |
|
out = _inner_forward(x) |
|
|
|
return out |
|
|
|
|
|
class InvertedResidualV3(nn.Module): |
|
"""Inverted Residual Block for MobileNetV3. |
|
|
|
Args: |
|
in_channels (int): The input channels of this Module. |
|
out_channels (int): The output channels of this Module. |
|
mid_channels (int): The input channels of the depthwise convolution. |
|
kernel_size (int): The kernal size of the depthwise convolution. |
|
Default: 3. |
|
stride (int): The stride of the depthwise convolution. Default: 1. |
|
se_cfg (dict): Config dict for se layer. Defaul: None, which means no |
|
se layer. |
|
with_expand_conv (bool): Use expand conv or not. If set False, |
|
mid_channels must be the same with in_channels. Default: True. |
|
conv_cfg (dict): Config dict for convolution layer. Default: None, |
|
which means using conv2d. |
|
norm_cfg (dict): Config dict for normalization layer. |
|
Default: dict(type='BN'). |
|
act_cfg (dict): Config dict for activation layer. |
|
Default: dict(type='ReLU'). |
|
with_cp (bool): Use checkpoint or not. Using checkpoint will save some |
|
memory while slowing down the training speed. Default: False. |
|
|
|
Returns: |
|
Tensor: The output tensor. |
|
""" |
|
|
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
mid_channels, |
|
kernel_size=3, |
|
stride=1, |
|
se_cfg=None, |
|
with_expand_conv=True, |
|
conv_cfg=None, |
|
norm_cfg=dict(type='BN'), |
|
act_cfg=dict(type='ReLU'), |
|
with_cp=False): |
|
super(InvertedResidualV3, self).__init__() |
|
self.with_res_shortcut = (stride == 1 and in_channels == out_channels) |
|
assert stride in [1, 2] |
|
self.with_cp = with_cp |
|
self.with_se = se_cfg is not None |
|
self.with_expand_conv = with_expand_conv |
|
|
|
if self.with_se: |
|
assert isinstance(se_cfg, dict) |
|
if not self.with_expand_conv: |
|
assert mid_channels == in_channels |
|
|
|
if self.with_expand_conv: |
|
self.expand_conv = ConvModule( |
|
in_channels=in_channels, |
|
out_channels=mid_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
conv_cfg=conv_cfg, |
|
norm_cfg=norm_cfg, |
|
act_cfg=act_cfg) |
|
self.depthwise_conv = ConvModule( |
|
in_channels=mid_channels, |
|
out_channels=mid_channels, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
padding=kernel_size // 2, |
|
groups=mid_channels, |
|
conv_cfg=dict( |
|
type='Conv2dAdaptivePadding') if stride == 2 else conv_cfg, |
|
norm_cfg=norm_cfg, |
|
act_cfg=act_cfg) |
|
|
|
if self.with_se: |
|
self.se = SELayer(**se_cfg) |
|
|
|
self.linear_conv = ConvModule( |
|
in_channels=mid_channels, |
|
out_channels=out_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
conv_cfg=conv_cfg, |
|
norm_cfg=norm_cfg, |
|
act_cfg=None) |
|
|
|
def forward(self, x): |
|
|
|
def _inner_forward(x): |
|
out = x |
|
|
|
if self.with_expand_conv: |
|
out = self.expand_conv(out) |
|
|
|
out = self.depthwise_conv(out) |
|
|
|
if self.with_se: |
|
out = self.se(out) |
|
|
|
out = self.linear_conv(out) |
|
|
|
if self.with_res_shortcut: |
|
return x + out |
|
else: |
|
return out |
|
|
|
if self.with_cp and x.requires_grad: |
|
out = cp.checkpoint(_inner_forward, x) |
|
else: |
|
out = _inner_forward(x) |
|
|
|
return out |
|
|