|
import glob |
|
import os |
|
from os.path import dirname, exists, isdir, join, relpath |
|
|
|
from mmcv import Config |
|
from torch import nn |
|
|
|
from mmseg.models import build_segmentor |
|
|
|
|
|
def _get_config_directory(): |
|
"""Find the predefined segmentor config directory.""" |
|
try: |
|
|
|
repo_dpath = dirname(dirname(__file__)) |
|
except NameError: |
|
|
|
import mmseg |
|
repo_dpath = dirname(dirname(mmseg.__file__)) |
|
config_dpath = join(repo_dpath, 'configs') |
|
if not exists(config_dpath): |
|
raise Exception('Cannot find config path') |
|
return config_dpath |
|
|
|
|
|
def test_config_build_segmentor(): |
|
"""Test that all segmentation models defined in the configs can be |
|
initialized.""" |
|
config_dpath = _get_config_directory() |
|
print('Found config_dpath = {!r}'.format(config_dpath)) |
|
|
|
config_fpaths = [] |
|
|
|
for sub_folder in os.listdir(config_dpath): |
|
if isdir(sub_folder): |
|
config_fpaths.append( |
|
list(glob.glob(join(config_dpath, sub_folder, '*.py')))[0]) |
|
config_fpaths = [p for p in config_fpaths if p.find('_base_') == -1] |
|
config_names = [relpath(p, config_dpath) for p in config_fpaths] |
|
|
|
print('Using {} config files'.format(len(config_names))) |
|
|
|
for config_fname in config_names: |
|
config_fpath = join(config_dpath, config_fname) |
|
config_mod = Config.fromfile(config_fpath) |
|
|
|
config_mod.model |
|
print('Building segmentor, config_fpath = {!r}'.format(config_fpath)) |
|
|
|
|
|
if 'pretrained' in config_mod.model: |
|
config_mod.model['pretrained'] = None |
|
|
|
print('building {}'.format(config_fname)) |
|
segmentor = build_segmentor(config_mod.model) |
|
assert segmentor is not None |
|
|
|
head_config = config_mod.model['decode_head'] |
|
_check_decode_head(head_config, segmentor.decode_head) |
|
|
|
|
|
def test_config_data_pipeline(): |
|
"""Test whether the data pipeline is valid and can process corner cases. |
|
|
|
CommandLine: |
|
xdoctest -m tests/test_config.py test_config_build_data_pipeline |
|
""" |
|
from mmcv import Config |
|
from mmseg.datasets.pipelines import Compose |
|
import numpy as np |
|
|
|
config_dpath = _get_config_directory() |
|
print('Found config_dpath = {!r}'.format(config_dpath)) |
|
|
|
import glob |
|
config_fpaths = list(glob.glob(join(config_dpath, '**', '*.py'))) |
|
config_fpaths = [p for p in config_fpaths if p.find('_base_') == -1] |
|
config_names = [relpath(p, config_dpath) for p in config_fpaths] |
|
|
|
print('Using {} config files'.format(len(config_names))) |
|
|
|
for config_fname in config_names: |
|
config_fpath = join(config_dpath, config_fname) |
|
print( |
|
'Building data pipeline, config_fpath = {!r}'.format(config_fpath)) |
|
config_mod = Config.fromfile(config_fpath) |
|
|
|
|
|
load_img_pipeline = config_mod.train_pipeline.pop(0) |
|
to_float32 = load_img_pipeline.get('to_float32', False) |
|
config_mod.train_pipeline.pop(0) |
|
config_mod.test_pipeline.pop(0) |
|
|
|
train_pipeline = Compose(config_mod.train_pipeline) |
|
test_pipeline = Compose(config_mod.test_pipeline) |
|
|
|
img = np.random.randint(0, 255, size=(1024, 2048, 3), dtype=np.uint8) |
|
if to_float32: |
|
img = img.astype(np.float32) |
|
seg = np.random.randint(0, 255, size=(1024, 2048, 1), dtype=np.uint8) |
|
|
|
results = dict( |
|
filename='test_img.png', |
|
ori_filename='test_img.png', |
|
img=img, |
|
img_shape=img.shape, |
|
ori_shape=img.shape, |
|
gt_semantic_seg=seg) |
|
results['seg_fields'] = ['gt_semantic_seg'] |
|
|
|
print('Test training data pipeline: \n{!r}'.format(train_pipeline)) |
|
output_results = train_pipeline(results) |
|
assert output_results is not None |
|
|
|
results = dict( |
|
filename='test_img.png', |
|
ori_filename='test_img.png', |
|
img=img, |
|
img_shape=img.shape, |
|
ori_shape=img.shape, |
|
) |
|
print('Test testing data pipeline: \n{!r}'.format(test_pipeline)) |
|
output_results = test_pipeline(results) |
|
assert output_results is not None |
|
|
|
|
|
def _check_decode_head(decode_head_cfg, decode_head): |
|
if isinstance(decode_head_cfg, list): |
|
assert isinstance(decode_head, nn.ModuleList) |
|
assert len(decode_head_cfg) == len(decode_head) |
|
num_heads = len(decode_head) |
|
for i in range(num_heads): |
|
_check_decode_head(decode_head_cfg[i], decode_head[i]) |
|
return |
|
|
|
assert decode_head_cfg['type'] == decode_head.__class__.__name__ |
|
|
|
assert decode_head_cfg['type'] == decode_head.__class__.__name__ |
|
|
|
in_channels = decode_head_cfg.in_channels |
|
input_transform = decode_head.input_transform |
|
assert input_transform in ['resize_concat', 'multiple_select', None] |
|
if input_transform is not None: |
|
assert isinstance(in_channels, (list, tuple)) |
|
assert isinstance(decode_head.in_index, (list, tuple)) |
|
assert len(in_channels) == len(decode_head.in_index) |
|
elif input_transform == 'resize_concat': |
|
assert sum(in_channels) == decode_head.in_channels |
|
else: |
|
assert isinstance(in_channels, int) |
|
assert in_channels == decode_head.in_channels |
|
assert isinstance(decode_head.in_index, int) |
|
|
|
if decode_head_cfg['type'] == 'PointHead': |
|
assert decode_head_cfg.channels+decode_head_cfg.num_classes == \ |
|
decode_head.fc_seg.in_channels |
|
assert decode_head.fc_seg.out_channels == decode_head_cfg.num_classes |
|
else: |
|
assert decode_head_cfg.channels == decode_head.conv_seg.in_channels |
|
assert decode_head.conv_seg.out_channels == decode_head_cfg.num_classes |
|
|