Image Segmentation
Transformers
PyTorch
upernet
Inference Endpoints
test2 / tests /test_inference.py
mccaly's picture
Upload 660 files
b13b124
raw
history blame
948 Bytes
import os.path as osp
import mmcv
from mmseg.apis import inference_segmentor, init_segmentor
def test_test_time_augmentation_on_cpu():
config_file = 'configs/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes.py'
config = mmcv.Config.fromfile(config_file)
# Remove pretrain model download for testing
config.model.pretrained = None
# Replace SyncBN with BN to inference on CPU
norm_cfg = dict(type='BN', requires_grad=True)
config.model.backbone.norm_cfg = norm_cfg
config.model.decode_head.norm_cfg = norm_cfg
config.model.auxiliary_head.norm_cfg = norm_cfg
# Enable test time augmentation
config.data.test.pipeline[1].flip = True
checkpoint_file = None
model = init_segmentor(config, checkpoint_file, device='cpu')
img = mmcv.imread(
osp.join(osp.dirname(__file__), 'data/color.jpg'), 'color')
result = inference_segmentor(model, img)
assert result[0].shape == (288, 512)