|
import argparse |
|
|
|
from mmcv import Config |
|
from mmcv.cnn import get_model_complexity_info |
|
|
|
from mmseg.models import build_segmentor |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description='Train a segmentor') |
|
parser.add_argument('config', help='train config file path') |
|
parser.add_argument( |
|
'--shape', |
|
type=int, |
|
nargs='+', |
|
default=[2048, 1024], |
|
help='input image size') |
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
def main(): |
|
|
|
args = parse_args() |
|
|
|
if len(args.shape) == 1: |
|
input_shape = (3, args.shape[0], args.shape[0]) |
|
elif len(args.shape) == 2: |
|
input_shape = (3, ) + tuple(args.shape) |
|
else: |
|
raise ValueError('invalid input shape') |
|
|
|
cfg = Config.fromfile(args.config) |
|
cfg.model.pretrained = None |
|
model = build_segmentor( |
|
cfg.model, |
|
train_cfg=cfg.get('train_cfg'), |
|
test_cfg=cfg.get('test_cfg')).cuda() |
|
model.eval() |
|
|
|
if hasattr(model, 'forward_dummy'): |
|
model.forward = model.forward_dummy |
|
else: |
|
raise NotImplementedError( |
|
'FLOPs counter is currently not currently supported with {}'. |
|
format(model.__class__.__name__)) |
|
|
|
flops, params = get_model_complexity_info(model, input_shape) |
|
split_line = '=' * 30 |
|
print('{0}\nInput shape: {1}\nFlops: {2}\nParams: {3}\n{0}'.format( |
|
split_line, input_shape, flops, params)) |
|
print('!!!Please be cautious if you use the results in papers. ' |
|
'You may need to check if all ops are supported and verify that the ' |
|
'flops computation is correct.') |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|