Image Segmentation
Transformers
PyTorch
upernet
Inference Endpoints
mccaly's picture
Upload 660 files
b13b124
import collections
from mmcv.utils import build_from_cfg
from ..builder import PIPELINES
@PIPELINES.register_module()
class Compose(object):
"""Compose multiple transforms sequentially.
Args:
transforms (Sequence[dict | callable]): Sequence of transform object or
config dict to be composed.
"""
def __init__(self, transforms):
assert isinstance(transforms, collections.abc.Sequence)
self.transforms = []
for transform in transforms:
if isinstance(transform, dict):
transform = build_from_cfg(transform, PIPELINES)
self.transforms.append(transform)
elif callable(transform):
self.transforms.append(transform)
else:
raise TypeError('transform must be callable or a dict')
def __call__(self, data):
"""Call function to apply transforms sequentially.
Args:
data (dict): A result dict contains the data to transform.
Returns:
dict: Transformed data.
"""
for t in self.transforms:
data = t(data)
if data is None:
return None
return data
def __repr__(self):
format_string = self.__class__.__name__ + '('
for t in self.transforms:
format_string += '\n'
format_string += f' {t}'
format_string += '\n)'
return format_string