|
import mmcv |
|
import numpy as np |
|
from mmcv.utils import deprecated_api_warning, is_tuple_of |
|
from numpy import random |
|
|
|
from ..builder import PIPELINES |
|
|
|
|
|
@PIPELINES.register_module() |
|
class Resize(object): |
|
"""Resize images & seg. |
|
|
|
This transform resizes the input image to some scale. If the input dict |
|
contains the key "scale", then the scale in the input dict is used, |
|
otherwise the specified scale in the init method is used. |
|
|
|
``img_scale`` can be Nong, a tuple (single-scale) or a list of tuple |
|
(multi-scale). There are 4 multiscale modes: |
|
|
|
- ``ratio_range is not None``: |
|
1. When img_scale is None, img_scale is the shape of image in results |
|
(img_scale = results['img'].shape[:2]) and the image is resized based |
|
on the original size. (mode 1) |
|
2. When img_scale is a tuple (single-scale), randomly sample a ratio from |
|
the ratio range and multiply it with the image scale. (mode 2) |
|
|
|
- ``ratio_range is None and multiscale_mode == "range"``: randomly sample a |
|
scale from the a range. (mode 3) |
|
|
|
- ``ratio_range is None and multiscale_mode == "value"``: randomly sample a |
|
scale from multiple scales. (mode 4) |
|
|
|
Args: |
|
img_scale (tuple or list[tuple]): Images scales for resizing. |
|
multiscale_mode (str): Either "range" or "value". |
|
ratio_range (tuple[float]): (min_ratio, max_ratio) |
|
keep_ratio (bool): Whether to keep the aspect ratio when resizing the |
|
image. |
|
""" |
|
|
|
def __init__(self, |
|
img_scale=None, |
|
multiscale_mode='range', |
|
ratio_range=None, |
|
keep_ratio=True): |
|
if img_scale is None: |
|
self.img_scale = None |
|
else: |
|
if isinstance(img_scale, list): |
|
self.img_scale = img_scale |
|
else: |
|
self.img_scale = [img_scale] |
|
assert mmcv.is_list_of(self.img_scale, tuple) |
|
|
|
if ratio_range is not None: |
|
|
|
|
|
assert self.img_scale is None or len(self.img_scale) == 1 |
|
else: |
|
|
|
assert multiscale_mode in ['value', 'range'] |
|
|
|
self.multiscale_mode = multiscale_mode |
|
self.ratio_range = ratio_range |
|
self.keep_ratio = keep_ratio |
|
|
|
@staticmethod |
|
def random_select(img_scales): |
|
"""Randomly select an img_scale from given candidates. |
|
|
|
Args: |
|
img_scales (list[tuple]): Images scales for selection. |
|
|
|
Returns: |
|
(tuple, int): Returns a tuple ``(img_scale, scale_dix)``, |
|
where ``img_scale`` is the selected image scale and |
|
``scale_idx`` is the selected index in the given candidates. |
|
""" |
|
|
|
assert mmcv.is_list_of(img_scales, tuple) |
|
scale_idx = np.random.randint(len(img_scales)) |
|
img_scale = img_scales[scale_idx] |
|
return img_scale, scale_idx |
|
|
|
@staticmethod |
|
def random_sample(img_scales): |
|
"""Randomly sample an img_scale when ``multiscale_mode=='range'``. |
|
|
|
Args: |
|
img_scales (list[tuple]): Images scale range for sampling. |
|
There must be two tuples in img_scales, which specify the lower |
|
and uper bound of image scales. |
|
|
|
Returns: |
|
(tuple, None): Returns a tuple ``(img_scale, None)``, where |
|
``img_scale`` is sampled scale and None is just a placeholder |
|
to be consistent with :func:`random_select`. |
|
""" |
|
|
|
assert mmcv.is_list_of(img_scales, tuple) and len(img_scales) == 2 |
|
img_scale_long = [max(s) for s in img_scales] |
|
img_scale_short = [min(s) for s in img_scales] |
|
long_edge = np.random.randint( |
|
min(img_scale_long), |
|
max(img_scale_long) + 1) |
|
short_edge = np.random.randint( |
|
min(img_scale_short), |
|
max(img_scale_short) + 1) |
|
img_scale = (long_edge, short_edge) |
|
return img_scale, None |
|
|
|
@staticmethod |
|
def random_sample_ratio(img_scale, ratio_range): |
|
"""Randomly sample an img_scale when ``ratio_range`` is specified. |
|
|
|
A ratio will be randomly sampled from the range specified by |
|
``ratio_range``. Then it would be multiplied with ``img_scale`` to |
|
generate sampled scale. |
|
|
|
Args: |
|
img_scale (tuple): Images scale base to multiply with ratio. |
|
ratio_range (tuple[float]): The minimum and maximum ratio to scale |
|
the ``img_scale``. |
|
|
|
Returns: |
|
(tuple, None): Returns a tuple ``(scale, None)``, where |
|
``scale`` is sampled ratio multiplied with ``img_scale`` and |
|
None is just a placeholder to be consistent with |
|
:func:`random_select`. |
|
""" |
|
|
|
assert isinstance(img_scale, tuple) and len(img_scale) == 2 |
|
min_ratio, max_ratio = ratio_range |
|
assert min_ratio <= max_ratio |
|
ratio = np.random.random_sample() * (max_ratio - min_ratio) + min_ratio |
|
scale = int(img_scale[0] * ratio), int(img_scale[1] * ratio) |
|
return scale, None |
|
|
|
def _random_scale(self, results): |
|
"""Randomly sample an img_scale according to ``ratio_range`` and |
|
``multiscale_mode``. |
|
|
|
If ``ratio_range`` is specified, a ratio will be sampled and be |
|
multiplied with ``img_scale``. |
|
If multiple scales are specified by ``img_scale``, a scale will be |
|
sampled according to ``multiscale_mode``. |
|
Otherwise, single scale will be used. |
|
|
|
Args: |
|
results (dict): Result dict from :obj:`dataset`. |
|
|
|
Returns: |
|
dict: Two new keys 'scale` and 'scale_idx` are added into |
|
``results``, which would be used by subsequent pipelines. |
|
""" |
|
|
|
if self.ratio_range is not None: |
|
if self.img_scale is None: |
|
h, w = results['img'].shape[:2] |
|
scale, scale_idx = self.random_sample_ratio((w, h), |
|
self.ratio_range) |
|
else: |
|
scale, scale_idx = self.random_sample_ratio( |
|
self.img_scale[0], self.ratio_range) |
|
elif len(self.img_scale) == 1: |
|
scale, scale_idx = self.img_scale[0], 0 |
|
elif self.multiscale_mode == 'range': |
|
scale, scale_idx = self.random_sample(self.img_scale) |
|
elif self.multiscale_mode == 'value': |
|
scale, scale_idx = self.random_select(self.img_scale) |
|
else: |
|
raise NotImplementedError |
|
|
|
results['scale'] = scale |
|
results['scale_idx'] = scale_idx |
|
|
|
def _resize_img(self, results): |
|
"""Resize images with ``results['scale']``.""" |
|
if self.keep_ratio: |
|
img, scale_factor = mmcv.imrescale( |
|
results['img'], results['scale'], return_scale=True) |
|
|
|
|
|
new_h, new_w = img.shape[:2] |
|
h, w = results['img'].shape[:2] |
|
w_scale = new_w / w |
|
h_scale = new_h / h |
|
else: |
|
img, w_scale, h_scale = mmcv.imresize( |
|
results['img'], results['scale'], return_scale=True) |
|
scale_factor = np.array([w_scale, h_scale, w_scale, h_scale], |
|
dtype=np.float32) |
|
results['img'] = img |
|
results['img_shape'] = img.shape |
|
results['pad_shape'] = img.shape |
|
results['scale_factor'] = scale_factor |
|
results['keep_ratio'] = self.keep_ratio |
|
|
|
def _resize_seg(self, results): |
|
"""Resize semantic segmentation map with ``results['scale']``.""" |
|
for key in results.get('seg_fields', []): |
|
if self.keep_ratio: |
|
gt_seg = mmcv.imrescale( |
|
results[key], results['scale'], interpolation='nearest') |
|
else: |
|
gt_seg = mmcv.imresize( |
|
results[key], results['scale'], interpolation='nearest') |
|
results[key] = gt_seg |
|
|
|
def __call__(self, results): |
|
"""Call function to resize images, bounding boxes, masks, semantic |
|
segmentation map. |
|
|
|
Args: |
|
results (dict): Result dict from loading pipeline. |
|
|
|
Returns: |
|
dict: Resized results, 'img_shape', 'pad_shape', 'scale_factor', |
|
'keep_ratio' keys are added into result dict. |
|
""" |
|
|
|
if 'scale' not in results: |
|
self._random_scale(results) |
|
self._resize_img(results) |
|
self._resize_seg(results) |
|
return results |
|
|
|
def __repr__(self): |
|
repr_str = self.__class__.__name__ |
|
repr_str += (f'(img_scale={self.img_scale}, ' |
|
f'multiscale_mode={self.multiscale_mode}, ' |
|
f'ratio_range={self.ratio_range}, ' |
|
f'keep_ratio={self.keep_ratio})') |
|
return repr_str |
|
|
|
|
|
@PIPELINES.register_module() |
|
class RandomFlip(object): |
|
"""Flip the image & seg. |
|
|
|
If the input dict contains the key "flip", then the flag will be used, |
|
otherwise it will be randomly decided by a ratio specified in the init |
|
method. |
|
|
|
Args: |
|
prob (float, optional): The flipping probability. Default: None. |
|
direction(str, optional): The flipping direction. Options are |
|
'horizontal' and 'vertical'. Default: 'horizontal'. |
|
""" |
|
|
|
@deprecated_api_warning({'flip_ratio': 'prob'}, cls_name='RandomFlip') |
|
def __init__(self, prob=None, direction='horizontal'): |
|
self.prob = prob |
|
self.direction = direction |
|
if prob is not None: |
|
assert prob >= 0 and prob <= 1 |
|
assert direction in ['horizontal', 'vertical'] |
|
|
|
def __call__(self, results): |
|
"""Call function to flip bounding boxes, masks, semantic segmentation |
|
maps. |
|
|
|
Args: |
|
results (dict): Result dict from loading pipeline. |
|
|
|
Returns: |
|
dict: Flipped results, 'flip', 'flip_direction' keys are added into |
|
result dict. |
|
""" |
|
|
|
if 'flip' not in results: |
|
flip = True if np.random.rand() < self.prob else False |
|
results['flip'] = flip |
|
if 'flip_direction' not in results: |
|
results['flip_direction'] = self.direction |
|
if results['flip']: |
|
|
|
results['img'] = mmcv.imflip( |
|
results['img'], direction=results['flip_direction']) |
|
|
|
|
|
for key in results.get('seg_fields', []): |
|
|
|
results[key] = mmcv.imflip( |
|
results[key], direction=results['flip_direction']).copy() |
|
return results |
|
|
|
def __repr__(self): |
|
return self.__class__.__name__ + f'(prob={self.prob})' |
|
|
|
|
|
@PIPELINES.register_module() |
|
class Pad(object): |
|
"""Pad the image & mask. |
|
|
|
There are two padding modes: (1) pad to a fixed size and (2) pad to the |
|
minimum size that is divisible by some number. |
|
Added keys are "pad_shape", "pad_fixed_size", "pad_size_divisor", |
|
|
|
Args: |
|
size (tuple, optional): Fixed padding size. |
|
size_divisor (int, optional): The divisor of padded size. |
|
pad_val (float, optional): Padding value. Default: 0. |
|
seg_pad_val (float, optional): Padding value of segmentation map. |
|
Default: 255. |
|
""" |
|
|
|
def __init__(self, |
|
size=None, |
|
size_divisor=None, |
|
pad_val=0, |
|
seg_pad_val=255): |
|
self.size = size |
|
self.size_divisor = size_divisor |
|
self.pad_val = pad_val |
|
self.seg_pad_val = seg_pad_val |
|
|
|
assert size is not None or size_divisor is not None |
|
assert size is None or size_divisor is None |
|
|
|
def _pad_img(self, results): |
|
"""Pad images according to ``self.size``.""" |
|
if self.size is not None: |
|
padded_img = mmcv.impad( |
|
results['img'], shape=self.size, pad_val=self.pad_val) |
|
elif self.size_divisor is not None: |
|
padded_img = mmcv.impad_to_multiple( |
|
results['img'], self.size_divisor, pad_val=self.pad_val) |
|
results['img'] = padded_img |
|
results['pad_shape'] = padded_img.shape |
|
results['pad_fixed_size'] = self.size |
|
results['pad_size_divisor'] = self.size_divisor |
|
|
|
def _pad_seg(self, results): |
|
"""Pad masks according to ``results['pad_shape']``.""" |
|
for key in results.get('seg_fields', []): |
|
results[key] = mmcv.impad( |
|
results[key], |
|
shape=results['pad_shape'][:2], |
|
pad_val=self.seg_pad_val) |
|
|
|
def __call__(self, results): |
|
"""Call function to pad images, masks, semantic segmentation maps. |
|
|
|
Args: |
|
results (dict): Result dict from loading pipeline. |
|
|
|
Returns: |
|
dict: Updated result dict. |
|
""" |
|
|
|
self._pad_img(results) |
|
self._pad_seg(results) |
|
return results |
|
|
|
def __repr__(self): |
|
repr_str = self.__class__.__name__ |
|
repr_str += f'(size={self.size}, size_divisor={self.size_divisor}, ' \ |
|
f'pad_val={self.pad_val})' |
|
return repr_str |
|
|
|
|
|
@PIPELINES.register_module() |
|
class Normalize(object): |
|
"""Normalize the image. |
|
|
|
Added key is "img_norm_cfg". |
|
|
|
Args: |
|
mean (sequence): Mean values of 3 channels. |
|
std (sequence): Std values of 3 channels. |
|
to_rgb (bool): Whether to convert the image from BGR to RGB, |
|
default is true. |
|
""" |
|
|
|
def __init__(self, mean, std, to_rgb=True): |
|
self.mean = np.array(mean, dtype=np.float32) |
|
self.std = np.array(std, dtype=np.float32) |
|
self.to_rgb = to_rgb |
|
|
|
def __call__(self, results): |
|
"""Call function to normalize images. |
|
|
|
Args: |
|
results (dict): Result dict from loading pipeline. |
|
|
|
Returns: |
|
dict: Normalized results, 'img_norm_cfg' key is added into |
|
result dict. |
|
""" |
|
|
|
results['img'] = mmcv.imnormalize(results['img'], self.mean, self.std, |
|
self.to_rgb) |
|
results['img_norm_cfg'] = dict( |
|
mean=self.mean, std=self.std, to_rgb=self.to_rgb) |
|
return results |
|
|
|
def __repr__(self): |
|
repr_str = self.__class__.__name__ |
|
repr_str += f'(mean={self.mean}, std={self.std}, to_rgb=' \ |
|
f'{self.to_rgb})' |
|
return repr_str |
|
|
|
|
|
@PIPELINES.register_module() |
|
class Rerange(object): |
|
"""Rerange the image pixel value. |
|
|
|
Args: |
|
min_value (float or int): Minimum value of the reranged image. |
|
Default: 0. |
|
max_value (float or int): Maximum value of the reranged image. |
|
Default: 255. |
|
""" |
|
|
|
def __init__(self, min_value=0, max_value=255): |
|
assert isinstance(min_value, float) or isinstance(min_value, int) |
|
assert isinstance(max_value, float) or isinstance(max_value, int) |
|
assert min_value < max_value |
|
self.min_value = min_value |
|
self.max_value = max_value |
|
|
|
def __call__(self, results): |
|
"""Call function to rerange images. |
|
|
|
Args: |
|
results (dict): Result dict from loading pipeline. |
|
Returns: |
|
dict: Reranged results. |
|
""" |
|
|
|
img = results['img'] |
|
img_min_value = np.min(img) |
|
img_max_value = np.max(img) |
|
|
|
assert img_min_value < img_max_value |
|
|
|
img = (img - img_min_value) / (img_max_value - img_min_value) |
|
|
|
img = img * (self.max_value - self.min_value) + self.min_value |
|
results['img'] = img |
|
|
|
return results |
|
|
|
def __repr__(self): |
|
repr_str = self.__class__.__name__ |
|
repr_str += f'(min_value={self.min_value}, max_value={self.max_value})' |
|
return repr_str |
|
|
|
|
|
@PIPELINES.register_module() |
|
class CLAHE(object): |
|
"""Use CLAHE method to process the image. |
|
|
|
See `ZUIDERVELD,K. Contrast Limited Adaptive Histogram Equalization[J]. |
|
Graphics Gems, 1994:474-485.` for more information. |
|
|
|
Args: |
|
clip_limit (float): Threshold for contrast limiting. Default: 40.0. |
|
tile_grid_size (tuple[int]): Size of grid for histogram equalization. |
|
Input image will be divided into equally sized rectangular tiles. |
|
It defines the number of tiles in row and column. Default: (8, 8). |
|
""" |
|
|
|
def __init__(self, clip_limit=40.0, tile_grid_size=(8, 8)): |
|
assert isinstance(clip_limit, (float, int)) |
|
self.clip_limit = clip_limit |
|
assert is_tuple_of(tile_grid_size, int) |
|
assert len(tile_grid_size) == 2 |
|
self.tile_grid_size = tile_grid_size |
|
|
|
def __call__(self, results): |
|
"""Call function to Use CLAHE method process images. |
|
|
|
Args: |
|
results (dict): Result dict from loading pipeline. |
|
|
|
Returns: |
|
dict: Processed results. |
|
""" |
|
|
|
for i in range(results['img'].shape[2]): |
|
results['img'][:, :, i] = mmcv.clahe( |
|
np.array(results['img'][:, :, i], dtype=np.uint8), |
|
self.clip_limit, self.tile_grid_size) |
|
|
|
return results |
|
|
|
def __repr__(self): |
|
repr_str = self.__class__.__name__ |
|
repr_str += f'(clip_limit={self.clip_limit}, '\ |
|
f'tile_grid_size={self.tile_grid_size})' |
|
return repr_str |
|
|
|
|
|
@PIPELINES.register_module() |
|
class RandomCrop(object): |
|
"""Random crop the image & seg. |
|
|
|
Args: |
|
crop_size (tuple): Expected size after cropping, (h, w). |
|
cat_max_ratio (float): The maximum ratio that single category could |
|
occupy. |
|
""" |
|
|
|
def __init__(self, crop_size, cat_max_ratio=1., ignore_index=255): |
|
assert crop_size[0] > 0 and crop_size[1] > 0 |
|
self.crop_size = crop_size |
|
self.cat_max_ratio = cat_max_ratio |
|
self.ignore_index = ignore_index |
|
|
|
def get_crop_bbox(self, img): |
|
"""Randomly get a crop bounding box.""" |
|
margin_h = max(img.shape[0] - self.crop_size[0], 0) |
|
margin_w = max(img.shape[1] - self.crop_size[1], 0) |
|
offset_h = np.random.randint(0, margin_h + 1) |
|
offset_w = np.random.randint(0, margin_w + 1) |
|
crop_y1, crop_y2 = offset_h, offset_h + self.crop_size[0] |
|
crop_x1, crop_x2 = offset_w, offset_w + self.crop_size[1] |
|
|
|
return crop_y1, crop_y2, crop_x1, crop_x2 |
|
|
|
def crop(self, img, crop_bbox): |
|
"""Crop from ``img``""" |
|
crop_y1, crop_y2, crop_x1, crop_x2 = crop_bbox |
|
img = img[crop_y1:crop_y2, crop_x1:crop_x2, ...] |
|
return img |
|
|
|
def __call__(self, results): |
|
"""Call function to randomly crop images, semantic segmentation maps. |
|
|
|
Args: |
|
results (dict): Result dict from loading pipeline. |
|
|
|
Returns: |
|
dict: Randomly cropped results, 'img_shape' key in result dict is |
|
updated according to crop size. |
|
""" |
|
|
|
img = results['img'] |
|
crop_bbox = self.get_crop_bbox(img) |
|
if self.cat_max_ratio < 1.: |
|
|
|
for _ in range(10): |
|
seg_temp = self.crop(results['gt_semantic_seg'], crop_bbox) |
|
labels, cnt = np.unique(seg_temp, return_counts=True) |
|
cnt = cnt[labels != self.ignore_index] |
|
if len(cnt) > 1 and np.max(cnt) / np.sum( |
|
cnt) < self.cat_max_ratio: |
|
break |
|
crop_bbox = self.get_crop_bbox(img) |
|
|
|
|
|
img = self.crop(img, crop_bbox) |
|
img_shape = img.shape |
|
results['img'] = img |
|
results['img_shape'] = img_shape |
|
|
|
|
|
for key in results.get('seg_fields', []): |
|
results[key] = self.crop(results[key], crop_bbox) |
|
|
|
return results |
|
|
|
def __repr__(self): |
|
return self.__class__.__name__ + f'(crop_size={self.crop_size})' |
|
|
|
|
|
@PIPELINES.register_module() |
|
class RandomRotate(object): |
|
"""Rotate the image & seg. |
|
|
|
Args: |
|
prob (float): The rotation probability. |
|
degree (float, tuple[float]): Range of degrees to select from. If |
|
degree is a number instead of tuple like (min, max), |
|
the range of degree will be (``-degree``, ``+degree``) |
|
pad_val (float, optional): Padding value of image. Default: 0. |
|
seg_pad_val (float, optional): Padding value of segmentation map. |
|
Default: 255. |
|
center (tuple[float], optional): Center point (w, h) of the rotation in |
|
the source image. If not specified, the center of the image will be |
|
used. Default: None. |
|
auto_bound (bool): Whether to adjust the image size to cover the whole |
|
rotated image. Default: False |
|
""" |
|
|
|
def __init__(self, |
|
prob, |
|
degree, |
|
pad_val=0, |
|
seg_pad_val=255, |
|
center=None, |
|
auto_bound=False): |
|
self.prob = prob |
|
assert prob >= 0 and prob <= 1 |
|
if isinstance(degree, (float, int)): |
|
assert degree > 0, f'degree {degree} should be positive' |
|
self.degree = (-degree, degree) |
|
else: |
|
self.degree = degree |
|
assert len(self.degree) == 2, f'degree {self.degree} should be a ' \ |
|
f'tuple of (min, max)' |
|
self.pal_val = pad_val |
|
self.seg_pad_val = seg_pad_val |
|
self.center = center |
|
self.auto_bound = auto_bound |
|
|
|
def __call__(self, results): |
|
"""Call function to rotate image, semantic segmentation maps. |
|
|
|
Args: |
|
results (dict): Result dict from loading pipeline. |
|
|
|
Returns: |
|
dict: Rotated results. |
|
""" |
|
|
|
rotate = True if np.random.rand() < self.prob else False |
|
degree = np.random.uniform(min(*self.degree), max(*self.degree)) |
|
if rotate: |
|
|
|
results['img'] = mmcv.imrotate( |
|
results['img'], |
|
angle=degree, |
|
border_value=self.pal_val, |
|
center=self.center, |
|
auto_bound=self.auto_bound) |
|
|
|
|
|
for key in results.get('seg_fields', []): |
|
results[key] = mmcv.imrotate( |
|
results[key], |
|
angle=degree, |
|
border_value=self.seg_pad_val, |
|
center=self.center, |
|
auto_bound=self.auto_bound, |
|
interpolation='nearest') |
|
return results |
|
|
|
def __repr__(self): |
|
repr_str = self.__class__.__name__ |
|
repr_str += f'(prob={self.prob}, ' \ |
|
f'degree={self.degree}, ' \ |
|
f'pad_val={self.pal_val}, ' \ |
|
f'seg_pad_val={self.seg_pad_val}, ' \ |
|
f'center={self.center}, ' \ |
|
f'auto_bound={self.auto_bound})' |
|
return repr_str |
|
|
|
|
|
@PIPELINES.register_module() |
|
class RGB2Gray(object): |
|
"""Convert RGB image to grayscale image. |
|
|
|
This transform calculate the weighted mean of input image channels with |
|
``weights`` and then expand the channels to ``out_channels``. When |
|
``out_channels`` is None, the number of output channels is the same as |
|
input channels. |
|
|
|
Args: |
|
out_channels (int): Expected number of output channels after |
|
transforming. Default: None. |
|
weights (tuple[float]): The weights to calculate the weighted mean. |
|
Default: (0.299, 0.587, 0.114). |
|
""" |
|
|
|
def __init__(self, out_channels=None, weights=(0.299, 0.587, 0.114)): |
|
assert out_channels is None or out_channels > 0 |
|
self.out_channels = out_channels |
|
assert isinstance(weights, tuple) |
|
for item in weights: |
|
assert isinstance(item, (float, int)) |
|
self.weights = weights |
|
|
|
def __call__(self, results): |
|
"""Call function to convert RGB image to grayscale image. |
|
|
|
Args: |
|
results (dict): Result dict from loading pipeline. |
|
|
|
Returns: |
|
dict: Result dict with grayscale image. |
|
""" |
|
img = results['img'] |
|
assert len(img.shape) == 3 |
|
assert img.shape[2] == len(self.weights) |
|
weights = np.array(self.weights).reshape((1, 1, -1)) |
|
img = (img * weights).sum(2, keepdims=True) |
|
if self.out_channels is None: |
|
img = img.repeat(weights.shape[2], axis=2) |
|
else: |
|
img = img.repeat(self.out_channels, axis=2) |
|
|
|
results['img'] = img |
|
results['img_shape'] = img.shape |
|
|
|
return results |
|
|
|
def __repr__(self): |
|
repr_str = self.__class__.__name__ |
|
repr_str += f'(out_channels={self.out_channels}, ' \ |
|
f'weights={self.weights})' |
|
return repr_str |
|
|
|
|
|
@PIPELINES.register_module() |
|
class AdjustGamma(object): |
|
"""Using gamma correction to process the image. |
|
|
|
Args: |
|
gamma (float or int): Gamma value used in gamma correction. |
|
Default: 1.0. |
|
""" |
|
|
|
def __init__(self, gamma=1.0): |
|
assert isinstance(gamma, float) or isinstance(gamma, int) |
|
assert gamma > 0 |
|
self.gamma = gamma |
|
inv_gamma = 1.0 / gamma |
|
self.table = np.array([(i / 255.0)**inv_gamma * 255 |
|
for i in np.arange(256)]).astype('uint8') |
|
|
|
def __call__(self, results): |
|
"""Call function to process the image with gamma correction. |
|
|
|
Args: |
|
results (dict): Result dict from loading pipeline. |
|
|
|
Returns: |
|
dict: Processed results. |
|
""" |
|
|
|
results['img'] = mmcv.lut_transform( |
|
np.array(results['img'], dtype=np.uint8), self.table) |
|
|
|
return results |
|
|
|
def __repr__(self): |
|
return self.__class__.__name__ + f'(gamma={self.gamma})' |
|
|
|
|
|
@PIPELINES.register_module() |
|
class SegRescale(object): |
|
"""Rescale semantic segmentation maps. |
|
|
|
Args: |
|
scale_factor (float): The scale factor of the final output. |
|
""" |
|
|
|
def __init__(self, scale_factor=1): |
|
self.scale_factor = scale_factor |
|
|
|
def __call__(self, results): |
|
"""Call function to scale the semantic segmentation map. |
|
|
|
Args: |
|
results (dict): Result dict from loading pipeline. |
|
|
|
Returns: |
|
dict: Result dict with semantic segmentation map scaled. |
|
""" |
|
for key in results.get('seg_fields', []): |
|
if self.scale_factor != 1: |
|
results[key] = mmcv.imrescale( |
|
results[key], self.scale_factor, interpolation='nearest') |
|
return results |
|
|
|
def __repr__(self): |
|
return self.__class__.__name__ + f'(scale_factor={self.scale_factor})' |
|
|
|
|
|
@PIPELINES.register_module() |
|
class PhotoMetricDistortion(object): |
|
"""Apply photometric distortion to image sequentially, every transformation |
|
is applied with a probability of 0.5. The position of random contrast is in |
|
second or second to last. |
|
|
|
1. random brightness |
|
2. random contrast (mode 0) |
|
3. convert color from BGR to HSV |
|
4. random saturation |
|
5. random hue |
|
6. convert color from HSV to BGR |
|
7. random contrast (mode 1) |
|
8. randomly swap channels |
|
|
|
Args: |
|
brightness_delta (int): delta of brightness. |
|
contrast_range (tuple): range of contrast. |
|
saturation_range (tuple): range of saturation. |
|
hue_delta (int): delta of hue. |
|
""" |
|
|
|
def __init__(self, |
|
brightness_delta=32, |
|
contrast_range=(0.5, 1.5), |
|
saturation_range=(0.5, 1.5), |
|
hue_delta=18): |
|
self.brightness_delta = brightness_delta |
|
self.contrast_lower, self.contrast_upper = contrast_range |
|
self.saturation_lower, self.saturation_upper = saturation_range |
|
self.hue_delta = hue_delta |
|
|
|
def convert(self, img, alpha=1, beta=0): |
|
"""Multiple with alpha and add beat with clip.""" |
|
img = img.astype(np.float32) * alpha + beta |
|
img = np.clip(img, 0, 255) |
|
return img.astype(np.uint8) |
|
|
|
def brightness(self, img): |
|
"""Brightness distortion.""" |
|
if random.randint(2): |
|
return self.convert( |
|
img, |
|
beta=random.uniform(-self.brightness_delta, |
|
self.brightness_delta)) |
|
return img |
|
|
|
def contrast(self, img): |
|
"""Contrast distortion.""" |
|
if random.randint(2): |
|
return self.convert( |
|
img, |
|
alpha=random.uniform(self.contrast_lower, self.contrast_upper)) |
|
return img |
|
|
|
def saturation(self, img): |
|
"""Saturation distortion.""" |
|
if random.randint(2): |
|
img = mmcv.bgr2hsv(img) |
|
img[:, :, 1] = self.convert( |
|
img[:, :, 1], |
|
alpha=random.uniform(self.saturation_lower, |
|
self.saturation_upper)) |
|
img = mmcv.hsv2bgr(img) |
|
return img |
|
|
|
def hue(self, img): |
|
"""Hue distortion.""" |
|
if random.randint(2): |
|
img = mmcv.bgr2hsv(img) |
|
img[:, :, |
|
0] = (img[:, :, 0].astype(int) + |
|
random.randint(-self.hue_delta, self.hue_delta)) % 180 |
|
img = mmcv.hsv2bgr(img) |
|
return img |
|
|
|
def __call__(self, results): |
|
"""Call function to perform photometric distortion on images. |
|
|
|
Args: |
|
results (dict): Result dict from loading pipeline. |
|
|
|
Returns: |
|
dict: Result dict with images distorted. |
|
""" |
|
|
|
img = results['img'] |
|
|
|
img = self.brightness(img) |
|
|
|
|
|
|
|
mode = random.randint(2) |
|
if mode == 1: |
|
img = self.contrast(img) |
|
|
|
|
|
img = self.saturation(img) |
|
|
|
|
|
img = self.hue(img) |
|
|
|
|
|
if mode == 0: |
|
img = self.contrast(img) |
|
|
|
results['img'] = img |
|
return results |
|
|
|
def __repr__(self): |
|
repr_str = self.__class__.__name__ |
|
repr_str += (f'(brightness_delta={self.brightness_delta}, ' |
|
f'contrast_range=({self.contrast_lower}, ' |
|
f'{self.contrast_upper}), ' |
|
f'saturation_range=({self.saturation_lower}, ' |
|
f'{self.saturation_upper}), ' |
|
f'hue_delta={self.hue_delta})') |
|
return repr_str |
|
|