|
""" DropBlock, DropPath |
|
|
|
PyTorch implementations of DropBlock and DropPath (Stochastic Depth) regularization layers. |
|
|
|
Papers: |
|
DropBlock: A regularization method for convolutional networks (https://arxiv.org/abs/1810.12890) |
|
|
|
Deep Networks with Stochastic Depth (https://arxiv.org/abs/1603.09382) |
|
|
|
Code: |
|
DropBlock impl inspired by two Tensorflow impl that I liked: |
|
- https://github.com/tensorflow/tpu/blob/master/models/official/resnet/resnet_model.py#L74 |
|
- https://github.com/clovaai/assembled-cnn/blob/master/nets/blocks.py |
|
|
|
Hacked together by / Copyright 2020 Ross Wightman |
|
""" |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
def drop_block_2d( |
|
x, drop_prob: float = 0.1, block_size: int = 7, gamma_scale: float = 1.0, |
|
with_noise: bool = False, inplace: bool = False, batchwise: bool = False): |
|
""" DropBlock. See https://arxiv.org/pdf/1810.12890.pdf |
|
|
|
DropBlock with an experimental gaussian noise option. This layer has been tested on a few training |
|
runs with success, but needs further validation and possibly optimization for lower runtime impact. |
|
""" |
|
B, C, H, W = x.shape |
|
total_size = W * H |
|
clipped_block_size = min(block_size, min(W, H)) |
|
|
|
gamma = gamma_scale * drop_prob * total_size / clipped_block_size ** 2 / ( |
|
(W - block_size + 1) * (H - block_size + 1)) |
|
|
|
|
|
w_i, h_i = torch.meshgrid(torch.arange(W).to(x.device), torch.arange(H).to(x.device)) |
|
valid_block = ((w_i >= clipped_block_size // 2) & (w_i < W - (clipped_block_size - 1) // 2)) & \ |
|
((h_i >= clipped_block_size // 2) & (h_i < H - (clipped_block_size - 1) // 2)) |
|
valid_block = torch.reshape(valid_block, (1, 1, H, W)).to(dtype=x.dtype) |
|
|
|
if batchwise: |
|
|
|
uniform_noise = torch.rand((1, C, H, W), dtype=x.dtype, device=x.device) |
|
else: |
|
uniform_noise = torch.rand_like(x) |
|
block_mask = ((2 - gamma - valid_block + uniform_noise) >= 1).to(dtype=x.dtype) |
|
block_mask = -F.max_pool2d( |
|
-block_mask, |
|
kernel_size=clipped_block_size, |
|
stride=1, |
|
padding=clipped_block_size // 2) |
|
|
|
if with_noise: |
|
normal_noise = torch.randn((1, C, H, W), dtype=x.dtype, device=x.device) if batchwise else torch.randn_like(x) |
|
if inplace: |
|
x.mul_(block_mask).add_(normal_noise * (1 - block_mask)) |
|
else: |
|
x = x * block_mask + normal_noise * (1 - block_mask) |
|
else: |
|
normalize_scale = (block_mask.numel() / block_mask.to(dtype=torch.float32).sum().add(1e-7)).to(x.dtype) |
|
if inplace: |
|
x.mul_(block_mask * normalize_scale) |
|
else: |
|
x = x * block_mask * normalize_scale |
|
return x |
|
|
|
|
|
def drop_block_fast_2d( |
|
x: torch.Tensor, drop_prob: float = 0.1, block_size: int = 7, |
|
gamma_scale: float = 1.0, with_noise: bool = False, inplace: bool = False, batchwise: bool = False): |
|
""" DropBlock. See https://arxiv.org/pdf/1810.12890.pdf |
|
|
|
DropBlock with an experimental gaussian noise option. Simplied from above without concern for valid |
|
block mask at edges. |
|
""" |
|
B, C, H, W = x.shape |
|
total_size = W * H |
|
clipped_block_size = min(block_size, min(W, H)) |
|
gamma = gamma_scale * drop_prob * total_size / clipped_block_size ** 2 / ( |
|
(W - block_size + 1) * (H - block_size + 1)) |
|
|
|
if batchwise: |
|
|
|
block_mask = torch.rand((1, C, H, W), dtype=x.dtype, device=x.device) < gamma |
|
else: |
|
|
|
block_mask = torch.rand_like(x) < gamma |
|
block_mask = F.max_pool2d( |
|
block_mask.to(x.dtype), kernel_size=clipped_block_size, stride=1, padding=clipped_block_size // 2) |
|
|
|
if with_noise: |
|
normal_noise = torch.randn((1, C, H, W), dtype=x.dtype, device=x.device) if batchwise else torch.randn_like(x) |
|
if inplace: |
|
x.mul_(1. - block_mask).add_(normal_noise * block_mask) |
|
else: |
|
x = x * (1. - block_mask) + normal_noise * block_mask |
|
else: |
|
block_mask = 1 - block_mask |
|
normalize_scale = (block_mask.numel() / block_mask.to(dtype=torch.float32).sum().add(1e-7)).to(dtype=x.dtype) |
|
if inplace: |
|
x.mul_(block_mask * normalize_scale) |
|
else: |
|
x = x * block_mask * normalize_scale |
|
return x |
|
|
|
|
|
class DropBlock2d(nn.Module): |
|
""" DropBlock. See https://arxiv.org/pdf/1810.12890.pdf |
|
""" |
|
def __init__(self, |
|
drop_prob=0.1, |
|
block_size=7, |
|
gamma_scale=1.0, |
|
with_noise=False, |
|
inplace=False, |
|
batchwise=False, |
|
fast=True): |
|
super(DropBlock2d, self).__init__() |
|
self.drop_prob = drop_prob |
|
self.gamma_scale = gamma_scale |
|
self.block_size = block_size |
|
self.with_noise = with_noise |
|
self.inplace = inplace |
|
self.batchwise = batchwise |
|
self.fast = fast |
|
|
|
def forward(self, x): |
|
if not self.training or not self.drop_prob: |
|
return x |
|
if self.fast: |
|
return drop_block_fast_2d( |
|
x, self.drop_prob, self.block_size, self.gamma_scale, self.with_noise, self.inplace, self.batchwise) |
|
else: |
|
return drop_block_2d( |
|
x, self.drop_prob, self.block_size, self.gamma_scale, self.with_noise, self.inplace, self.batchwise) |
|
|
|
|
|
def drop_path(x, drop_prob: float = 0., training: bool = False): |
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). |
|
|
|
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, |
|
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... |
|
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for |
|
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use |
|
'survival rate' as the argument. |
|
|
|
""" |
|
if drop_prob == 0. or not training: |
|
return x |
|
keep_prob = 1 - drop_prob |
|
shape = (x.shape[0],) + (1,) * (x.ndim - 1) |
|
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) |
|
random_tensor.floor_() |
|
output = x.div(keep_prob) * random_tensor |
|
return output |
|
|
|
|
|
class DropPath(nn.Module): |
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). |
|
""" |
|
def __init__(self, drop_prob=None): |
|
super(DropPath, self).__init__() |
|
self.drop_prob = drop_prob |
|
|
|
def forward(self, x): |
|
return drop_path(x, self.drop_prob, self.training) |
|
|