|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from functools import partial |
|
import math |
|
|
|
from .helpers import load_pretrained |
|
from .layers import DropPath, to_2tuple, trunc_normal_ |
|
|
|
from ..builder import BACKBONES |
|
|
|
from mmcv.cnn import build_norm_layer |
|
|
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, |
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, |
|
'crop_pct': .9, 'interpolation': 'bicubic', |
|
'mean': (0.485, 0.456, 0.406), 'std': (0.229, 0.224, 0.225), |
|
'first_conv': '', 'classifier': 'head', |
|
**kwargs |
|
} |
|
|
|
|
|
default_cfgs = { |
|
|
|
'vit_small_patch16_224': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/vit_small_p16_224-15ec54c9.pth', |
|
), |
|
'vit_base_patch16_224': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth', |
|
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), |
|
|
|
), |
|
'vit_base_patch16_384': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_384-83fb41ba.pth', |
|
input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0), |
|
'vit_base_patch32_384': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p32_384-830016f5.pth', |
|
input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0), |
|
'vit_large_patch16_224': _cfg(), |
|
'vit_large_patch16_384': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_384-b3be5167.pth', |
|
input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0, |
|
), |
|
'vit_large_patch32_384': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p32_384-9b920ba8.pth', |
|
input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0), |
|
'vit_huge_patch16_224': _cfg(), |
|
'vit_huge_patch32_384': _cfg(input_size=(3, 384, 384)), |
|
|
|
'vit_small_resnet26d_224': _cfg(), |
|
'vit_small_resnet50d_s3_224': _cfg(), |
|
'vit_base_resnet26d_224': _cfg(), |
|
'vit_base_resnet50d_224': _cfg(), |
|
'deit_base_distilled_path16_384': _cfg( |
|
url='https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_384-d0272ac0.pth', |
|
input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0, checkpoint=True, |
|
), |
|
} |
|
|
|
|
|
class Mlp(nn.Module): |
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
|
|
self.scale = qk_scale or head_dim ** -0.5 |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward(self, x): |
|
B, N, C = x.shape |
|
q, k, v = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) |
|
|
|
attn = (q @ k.transpose(-2, -1)) * self.scale |
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class Block(nn.Module): |
|
|
|
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., |
|
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): |
|
super().__init__() |
|
self.norm1 = norm_layer(dim) |
|
self.attn = Attention( |
|
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) |
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) |
|
|
|
def forward(self, x): |
|
x = x + self.drop_path(self.attn(self.norm1(x))) |
|
x = x + self.drop_path(self.mlp(self.norm2(x))) |
|
return x |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
""" Image to Patch Embedding |
|
""" |
|
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): |
|
super().__init__() |
|
img_size = to_2tuple(img_size) |
|
patch_size = to_2tuple(patch_size) |
|
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) |
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
self.num_patches = num_patches |
|
|
|
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) |
|
|
|
def forward(self, x): |
|
B, C, H, W = x.shape |
|
|
|
assert H == self.img_size[0] and W == self.img_size[1], \ |
|
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." |
|
|
|
|
|
x = self.proj(x) |
|
return x |
|
|
|
|
|
class HybridEmbed(nn.Module): |
|
""" CNN Feature Map Embedding |
|
Extract feature map from CNN, flatten, project to embedding dim. |
|
""" |
|
def __init__(self, backbone, img_size=224, feature_size=None, in_chans=3, embed_dim=768): |
|
super().__init__() |
|
assert isinstance(backbone, nn.Module) |
|
img_size = to_2tuple(img_size) |
|
self.img_size = img_size |
|
self.backbone = backbone |
|
if feature_size is None: |
|
with torch.no_grad(): |
|
|
|
|
|
|
|
training = backbone.training |
|
if training: |
|
backbone.eval() |
|
o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1]))[-1] |
|
feature_size = o.shape[-2:] |
|
feature_dim = o.shape[1] |
|
backbone.train(training) |
|
else: |
|
feature_size = to_2tuple(feature_size) |
|
feature_dim = self.backbone.feature_info.channels()[-1] |
|
self.num_patches = feature_size[0] * feature_size[1] |
|
self.proj = nn.Linear(feature_dim, embed_dim) |
|
|
|
def forward(self, x): |
|
x = self.backbone(x)[-1] |
|
x = x.flatten(2).transpose(1, 2) |
|
x = self.proj(x) |
|
return x |
|
|
|
|
|
@BACKBONES.register_module() |
|
class VisionTransformer(nn.Module): |
|
""" Vision Transformer with support for patch or hybrid CNN input stage |
|
""" |
|
def __init__(self, model_name='vit_large_patch16_384', img_size=384, patch_size=16, in_chans=3, embed_dim=1024, depth=24, |
|
num_heads=16, num_classes=19, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop_rate=0.1, attn_drop_rate=0., |
|
drop_path_rate=0., hybrid_backbone=None, norm_layer=partial(nn.LayerNorm, eps=1e-6), norm_cfg=None, |
|
pos_embed_interp=False, random_init=False, align_corners=False, pretrain_weights=None, **kwargs): |
|
super(VisionTransformer, self).__init__(**kwargs) |
|
self.model_name = model_name |
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
self.in_chans = in_chans |
|
self.embed_dim = embed_dim |
|
self.depth = depth |
|
self.num_heads = num_heads |
|
self.num_classes = num_classes |
|
self.mlp_ratio = mlp_ratio |
|
self.qkv_bias = qkv_bias |
|
self.qk_scale = qk_scale |
|
self.drop_rate = drop_rate |
|
self.attn_drop_rate = attn_drop_rate |
|
self.drop_path_rate = drop_path_rate |
|
self.hybrid_backbone = hybrid_backbone |
|
self.norm_layer = norm_layer |
|
self.norm_cfg = norm_cfg |
|
self.pos_embed_interp = pos_embed_interp |
|
self.random_init = random_init |
|
self.align_corners = align_corners |
|
self.pretrain_weights = pretrain_weights |
|
|
|
self.num_stages = self.depth |
|
self.out_indices= tuple(range(self.num_stages)) |
|
|
|
if self.hybrid_backbone is not None: |
|
self.patch_embed = HybridEmbed( |
|
self.hybrid_backbone, img_size=self.img_size, in_chans=self.in_chans, embed_dim=self.embed_dim) |
|
else: |
|
self.patch_embed = PatchEmbed( |
|
img_size=self.img_size, patch_size=self.patch_size, in_chans=self.in_chans, embed_dim=self.embed_dim) |
|
self.num_patches = self.patch_embed.num_patches |
|
|
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim)) |
|
self.pos_embed = nn.Parameter(torch.zeros(1, self.num_patches + 1, self.embed_dim)) |
|
self.pos_drop = nn.Dropout(p=self.drop_rate) |
|
|
|
dpr = [x.item() for x in torch.linspace(0, self.drop_path_rate, self.depth)] |
|
self.blocks = nn.ModuleList([ |
|
Block( |
|
dim=self.embed_dim, num_heads=self.num_heads, mlp_ratio=self.mlp_ratio, qkv_bias=self.qkv_bias, qk_scale=self.qk_scale, |
|
drop=self.drop_rate, attn_drop=self.attn_drop_rate, drop_path=dpr[i], norm_layer=self.norm_layer) |
|
for i in range(self.depth)]) |
|
|
|
|
|
|
|
|
|
|
|
trunc_normal_(self.pos_embed, std=.02) |
|
trunc_normal_(self.cls_token, std=.02) |
|
|
|
|
|
def init_weights(self, pretrained=None): |
|
|
|
|
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
if self.random_init == False: |
|
self.default_cfg = default_cfgs[self.model_name] |
|
|
|
if not self.pretrain_weights == None: |
|
self.default_cfg['pretrained_finetune'] = self.pretrain_weights |
|
|
|
if self.model_name in ['vit_small_patch16_224', 'vit_base_patch16_224']: |
|
load_pretrained(self, num_classes=self.num_classes, in_chans=self.in_chans, pos_embed_interp=self.pos_embed_interp, num_patches=self.patch_embed.num_patches, align_corners=self.align_corners, filter_fn=self._conv_filter) |
|
else: |
|
load_pretrained(self, num_classes=self.num_classes, in_chans=self.in_chans, pos_embed_interp=self.pos_embed_interp, num_patches=self.patch_embed.num_patches, align_corners=self.align_corners) |
|
else: |
|
print('Initialize weight randomly') |
|
|
|
@property |
|
def no_weight_decay(self): |
|
return {'pos_embed', 'cls_token'} |
|
|
|
def _conv_filter(self, state_dict, patch_size=16): |
|
""" convert patch embedding weight from manual patchify + linear proj to conv""" |
|
out_dict = {} |
|
for k, v in state_dict.items(): |
|
if 'patch_embed.proj.weight' in k: |
|
v = v.reshape((v.shape[0], 3, patch_size, patch_size)) |
|
out_dict[k] = v |
|
return out_dict |
|
|
|
def to_2D(self, x): |
|
n, hw, c = x.shape |
|
h=w = int(math.sqrt(hw)) |
|
x = x.transpose(1,2).reshape(n, c, h, w) |
|
return x |
|
|
|
def to_1D(self, x): |
|
n, c, h, w = x.shape |
|
x = x.reshape(n,c,-1).transpose(1,2) |
|
return x |
|
|
|
def forward(self, x): |
|
B = x.shape[0] |
|
x = self.patch_embed(x) |
|
|
|
x = x.flatten(2).transpose(1, 2) |
|
|
|
cls_tokens = self.cls_token.expand(B, -1, -1) |
|
x = torch.cat((cls_tokens, x), dim=1) |
|
x = x + self.pos_embed |
|
x = self.pos_drop(x) |
|
|
|
outs = [] |
|
for i, blk in enumerate(self.blocks): |
|
x = blk(x) |
|
if i in self.out_indices: |
|
outs.append(x) |
|
return tuple(outs) |
|
|
|
|
|
|